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 Abstract 

In this article, a novel technique is presented for calculating the mean of a countable population 

using simple random sampling (SRS) in situations where there are outliers in the data. The proposed 

approach employs a robust regression type estimation method called re-descending M-estimation. 

To assess the effectiveness of the new method, the mean square error (MSE) equation is derived 

using a first-order approximation and compared against existing estimation methods. Furthermore, 

the percentage relative efficiency (PRE) of the proposed estimator is calculated in comparison to 

other estimators. Real-life data sets are employed to demonstrate the efficacy of the suggested 

approach. The results indicate that the proposed estimator outperforms other estimators in the 

literature.  
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1. Introduction 

When utilizing supplementary information in estimation methods, the ratio or regression approach 

is employed to enhance effectiveness. [1]aimed to improve mean estimators by incorporating the 

traditional measures of descriptive statistics related to additional information. 

In survey sampling, there are several ways we can improve our estimate by using supplementary 

data. It should be noted that the ratio, regression, and product type estimation techniques are useful 

when the supplementary data are available [2]. However, situations can also occur where many 

authors develop various estimators using auxiliary data, improving the performance of the 

estimation methods. In this situation, numerous writers, including [3-4], constructed a number of 

improved and modified estimators using auxiliary data. 

The term "outlier" refers to an observation in a dataset that deviates significantly from the norm and 

frequently has an important statistical impact. In sample studies, it is not always feasible to access 
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the entire population, and therefore it can be challenging to identify the presence of outliers. If a 

sample includes an outlier observation, the efficiency of the estimation method can be reduced, 

especially in situations involving small sample sizes. To mitigate the impact of outlier(s) on the 

actual data, robust regression techniques are commonly employed. In the field of statistics, M-

estimators serve as a robust alternative to traditional estimators. The redescending M-estimation 

method is suggested [5] as a viable solution to the problem of outliers in comparison to other robust 

estimation methodologies. 

It is generally known that the presence of outliers degrades the performance of the ordinary least 

squares (OLS) estimation method. Re-descending M-estimation techniques are employed in this 

case. Many researchers have discussed about the M-estimators including [6-9]. Some writers, 

including [10-11] developed ratio based mean estimators employing the M-estimation methods in 

the presence of outliers. 

This article introduces a fresh robust regression mean estimator utilizing redescending M-estimators 

to enhance efficiency. The structure of the article is as follows: a review of existing estimators from 

the literature is presented in Section 2, followed by a detailed description of the proposed robust 

regression mean estimator in Section 3. Section 4 provides a report on a numerical study conducted 

to assess the estimator's performance. Finally, the article concludes with Section 5.  

 

2. Existing estimators in the literature  

2.1 Kadilar and Cingi (2004) estimators 

In simple random sampling (SRS), [1] suggested the estimators 𝑦̅𝐾𝐶𝑙
. According to their analysis, 

the suggested estimators outperform then OLS estimators in terms of effectiveness. 

𝑦̅𝐾𝐶𝑙
=

𝑦̅ + 𝑏(𝑋̅ − 𝑥̅)

𝛾𝑙𝑥̅ + 𝜓𝑙

(𝛾𝑙𝑋̅ + 𝜓𝑙)                        𝑙 = 1,2,3,4,5                                            (1) 

where 𝑦̅ and 𝑥̅ are the study's sample mean and supplemental variable, respectively 

𝛾1 = 1 &  𝜓1 = 0, 𝛾2 = 1 &  𝜓2 = 𝐶𝑥 , 𝛾3 = 1  &  𝜓3 = 𝛽2(𝑥), 𝛾4 = 𝛽2(𝑥)  &  𝜓4 = 𝐶𝑥,
𝛾5 = 𝐶𝑥      &       𝜓5 = 𝛽2(𝑥)  

Where 𝛽2(𝑥) and 𝐶𝑥 are the coefficient of kurtosis of population and CV of supplementary variable 

respectively. Then 𝑏 =
𝑠𝑦𝑥

𝑠𝑥
2  is calculated by OLS method, where 𝑠𝑥

2 is sample variance of 𝑥, 𝑠𝑦𝑥 is 

sample covariance between 𝑥 and 𝑦 and 𝑌̅ and 𝑋̅ is the population mean of the study and 

supplementary variable. The mean square error (MSE) of the estimator can be obtained by utilizing 

the Taylor series approximation up to the first order given in (1) as follows, which is given as 

𝑀𝑆𝐸(𝑦̅𝐾𝐶𝑙
) =

1 − 𝑓

𝑛
(𝑅𝐾𝐶𝑙

2 𝑆𝑥
2 + 2𝐵𝑅𝐾𝐶𝑙

𝑆𝑥
2 + 𝐵2𝑆𝑥

2 − 2𝑅𝐾𝐶𝑙
𝑆𝑦𝑥 − 2𝐵𝑆𝑦𝑥 + 𝑆𝑦

2)           (2) 

For more details follow Cingi and Kadilar (2004), where, 𝑓 =
𝑛

𝑁
, n & N are sample size and the 

population size respectively and 

𝑅𝐾𝐶1
= 𝑅 =

𝑌̅

𝑋̅
  , 𝑅𝐾𝐶2

=
𝑌̅

𝑋̅ + 𝐶𝑥

  , 𝑅𝐾𝐶3
=

𝑌̅

𝑋̅ + 𝛽2(𝑥)
  , 𝑅𝐾𝐶4

=
𝑌̅𝛽2(𝑥)

𝑋̅𝛽2(𝑥) + 𝐶𝑥

  , 𝑅𝐾𝐶5

=
𝑌̅𝐶𝑥

𝑋̅𝐶𝑥 + 𝛽2(𝑥)
 

It's crucial to keep in mind that E (b) = B. For gaining more knowledge interested readers may refer 

to Shabbir and Onyango (2022). 
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2.2. Kadilar et al., (2007) suggested estimators 

The following robust estimators were proposed by [12] to estimate the population mean in the 

presence of outliers by utilising data on the auxiliary variable's parameter. 

𝑦̅𝑟𝑜𝑏𝑙
=

𝑦̅ + 𝑏𝑟𝑜𝑏(𝑋̅ − 𝑥̅)

𝛾𝑙𝑥̅ + 𝜓𝑙

(𝛾𝑙𝑋̅ + 𝜓𝑙)                                                                                            (3) 

Where 𝑏𝑟𝑜𝑏 is generated using the robust regression Huber M-estimator with 𝑙 =1, 2, 3, 4, 5. When 

data contain some outliers, the estimate in (3) is more effective than the estimator in (1). Huber 

(1964) discussed following 𝜌2(𝑟)  function, where r is the error term of OLS model. 

𝜌2(𝑟) = {
𝑟2 −𝑣 ≤ 𝑟 ≤ 𝑣

2𝑣|𝑟| − 𝑟2 𝑟 < −𝑣 𝑜𝑟 𝑟 < 𝑣
                                                                        

The tuning constant 𝑣 governs the robustness of the M-estimator, and its value can be adjusted 

accordingly. Huber (1964) suggested setting 𝑣 = 1.5𝑠. The 𝑏𝑟𝑜𝑏  is obtained by reducing 

∑ 𝜌2(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)
𝑛
𝑖=1  . 

MSE of  𝑦̅𝑟𝑜𝑏𝑙
 is obtaining by replace  𝐵 by 𝐵𝑟𝑜𝑏  in (2) and is given as  

𝑀𝑆𝐸(𝑦̅𝑟𝑜𝑏𝑙
) =

1 − 𝑓

𝑛
(𝑅𝐾𝐶𝑙

2 𝑆𝑥
2 + 2𝐵𝑟𝑜𝑏𝑅𝐾𝐶𝑙

𝑆𝑥
2 + 𝐵𝑟𝑜𝑏

2 𝑆𝑥
2 − 2𝑅𝐾𝐶𝑙

𝑆𝑦𝑥 − 2𝐵𝑟𝑜𝑏𝑆𝑦𝑥 + 𝑆𝑦
2)       (4) 

For more details see kadilar et al. (2007). 

 

2.3. Raza et al. (2019) estimators 

[5] developed ratio estimators based on a newly proposed robust redescending M-estimator. The 

Re-decending M-estimators (RM) are stated by 

𝑦̅𝑅𝑀𝑙
=

𝑦̅ + 𝑏𝑅𝑀(𝑋̅ − 𝑥̅)

𝛾𝑙𝑥̅ + 𝜓𝑙

(𝛾𝑙𝑋̅ + 𝜓𝑙)                                                                                                       (5) 

where 𝑏𝑅𝑀 is provided by [5]. The Raza's objective function's 𝜌1(𝑟𝑙) design is explained as 

𝜌1(𝑟𝑙) =
𝑣2

2𝑐
{1 − [1 + (

𝑟

𝑣
)

2

]
−𝑐

 }  𝑓𝑜𝑟 |𝑟| ≥ 0                                                                                         

where c and v are tuning parameters. The optimal tuning constant values for the current investigation 

are c = 2.5 and v = 8. The 𝑏𝑅𝑀 the redescending M-estimator is used in the MSE equation of the 

ratio estimators in equation (5). 

𝑀𝑆𝐸(𝑦̅𝑅𝑀𝑙
) =

1 − 𝑓

𝑛
(𝑅𝐾𝐶𝑙

2 𝑆𝑥
2 + 2𝐵𝑅𝑀𝑅𝐾𝐶𝑙

𝑆𝑥
2 + 𝐵𝑅𝑀

2 𝑆𝑥
2 − 2𝑅𝐾𝐶𝑙

𝑆𝑦𝑥 − 2𝐵𝑅𝑀𝑆𝑦𝑥 + 𝑆𝑦
2)             (6) 

 

3. Proposed robust regression mean estimator 

By extending the idea of existing estimator, we propose the robust regression mean estimator as 

𝑦̅𝑁𝑖
= 𝑎𝑦̅ + 𝑏𝑅𝑀(𝑋̅ − 𝑥̅)                                                                                                                            (7) 

where 𝑏𝑅𝑀 is the slope coefficient of [5] redescending M-estimators. 

Using Taylor series of expansion, the MSE of the proposed estimator is described as 
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ℎ(𝑥̅, 𝑦̅) − ℎ(𝑋̅, 𝑌̅) = [
𝛿ℎ(𝑎𝑦̅ + 𝑏𝑅𝑀(𝑋̅ − 𝑥̅))

𝛿𝑥̅
]

𝑋̅,𝑌̅

(𝑥̅ − 𝑋̅)

+ [
𝛿ℎ(𝑎𝑦̅ + 𝑏𝑅𝑀(𝑋̅ − 𝑥̅))

𝛿𝑦̅
]

𝑋̅,𝑌̅

(𝑦̅ − 𝑌̅)                                                                 (8) 

Now, by partially differentiating the first and second terms of equation (8) w.r.t. 𝑥̅ and 𝑦̅, 

respectively, we obtain. 

ℎ(𝑥̅, 𝑦̅) − ℎ(𝑋̅, 𝑌̅) = −𝑏𝑅𝑀(𝑥̅ − 𝑋̅) + 𝑎(𝑦̅ − 𝑌̅)                                                                                  (9) 

We obtain the MSE of the proposed estimator by squaring and taking expectation to both sides as. 

𝑀𝑆𝐸(𝑦̅𝑁𝑖
) =

1 − 𝑓

𝑛
[𝐵𝑅𝑀

2 𝑆𝑥
2 + 𝑎2𝑆𝑦

2 − 2𝐵𝑅𝑀𝑎𝑆𝑥𝑦]                                                                            (10) 

Partially differentiating the equation (10) to obtain the optimum value of a that minimizes the 

𝑀𝑆𝐸of 𝑦̅𝑁𝑖
, we get 

𝑎𝑜𝑝𝑡 = 𝐵𝑅𝑀

𝑆𝑥𝑦

𝑆𝑦
2

                                                                                                                                            (11) 

Substituting the value of 𝑎 in equation (10), the minimum 𝑀𝑆𝐸 of the proposed estimator is given 

by 

𝑀𝑆𝐸𝑚𝑖𝑛(𝑦̅𝑁𝑖
) =

1 − 𝑓

𝑛
𝐵𝑅𝑀

2 𝑆𝑥
2(1 − 𝜌2)                                                                                                  (12) 

 

4. Numerical illustration 

This section compares the performance of the proposed estimators to the existing estimators in terms 

of MSE and (PRE) using two real-world datasets. PRE of an estimator can be computed through the 

following expressions: 

𝑃𝑅𝐸(𝑦̅𝐾𝐶𝑙
, 𝑦̅𝑄) =

𝑦̅𝐾𝐶𝑙

𝑦̅𝑄

× 100 

where 𝑄 =  𝑦̅𝑟𝑜𝑏𝑙
, 𝑦̅𝑅𝑀𝑙

 𝑎𝑛𝑑 𝑦̅𝑁𝑖
       𝑙 = 1,2,3,4,5 

4.1.  Population I 

We have used the data from [12] about the production of apple 𝑦 in tons as Numbers of apple trees 

(x, 1 unit = 100 trees) were used as a research variable and a supplementary variable in 204 villages 

in Turkey's Karadeniz Region. Figure 1 displays a scatter plot of the gathered data that is used to 

look for outliers. 
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Figure 1: Numbers of Apple Trees and production of Apple 

Table 1: Statistics Regarding Population 1 

𝑁 = 204  𝑆𝑥 = 454.03  𝐵𝑅𝑀 = 2.484  

𝑛 = 30  𝑆𝑦 = 2389.77  𝑅𝐾𝐶1
= 3.6569   

𝑋̅ = 264.42  𝛽2(𝑥) = 29.77  𝑅𝐾𝐶2
= 3.6333  

𝑌̅ = 966.96  𝜌 = 0.713  𝑅𝐾𝐶3
= 3.2868  

𝐶𝑥 = 1.72  𝐵 = 3.753  𝑅𝐾𝐶4
= 3.6561  

𝑆𝑦𝑥 = 773727.8  𝐵𝑟𝑜𝑏 = 3.547  𝑅𝐾𝐶5
= 3.4319  

4.2.  Population II 

The information about state public-school spending, in the United States is taken from Fox (2008). 

This information, which comprises of 51 observations, shows the per-capita income and per-capita 

education spending for the American states in 1970. The independent variable is the per-capita 

income, while the dependent variable is the per-capita expenditure on education. Although the 

original data didn't contain any outliers, we added 6% of them to test how well the suggested 

estimators performed. Figure 2 shows the income and expense graph with outliers. 

 

  

 

 

 

 

 

 

 

Figure 2: Expenditures and Income with 6% outliers  
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Table 2: Statistics Regarding Population 2 

𝑁 = 54  𝑆𝑥 = 605.3097  𝐵𝑅𝑀 = 0.05383   

𝑛 = 5  𝑆𝑦 = 69.3353  𝑅𝐾𝐶1
= 0.06353   

𝑋̅ = 3288.7040  𝛽2(𝑥) = 2.2168  𝑅𝐾𝐶2
= 0.06353  

𝑌̅ = 208.9259  𝜌 = 0.7179  𝑅𝐾𝐶3
= 0.06349  

𝐶𝑥 = 0.1840  𝐵 = 0.08223   𝑅𝐾𝐶4
= 0.063526  

𝑆𝑦𝑥 = 30129.52  𝐵𝑟𝑜𝑏 = 0.06539   𝑅𝐾𝐶5
= 0.06330  

Table 3: The MSE of proposed and existing estimators 

Estimators Population I Population II 

𝑦̅𝐾𝐶1
   158167.6 691.1811 

𝑦̅𝐾𝐶2
  157159.4 691.1811 

𝑦̅𝐾𝐶3
  143107.4 690.8432 

𝑦̅𝐾𝐶4
  158133.4 691.1473 

𝑦̅𝐾𝐶5
  148820.5 689.2414 

𝑦̅𝑟𝑜𝑏1
  149586.9 567.7626 

𝑦̅𝑟𝑜𝑏2
  148635.6 567.7626 

𝑦̅𝑟𝑜𝑏3
  135420.3 567.5144 

𝑦̅𝑟𝑜𝑏4
  149554.5 567.7378 

𝑦̅𝑟𝑜𝑏5
  140783.0 566.338 

𝑦̅𝑅𝑀1
  113214.5 504.8712 

𝑦̅𝑅𝑀2
  112557.3 504.8712 

𝑦̅𝑅𝑀3
  103659.5 504.6844 

𝑦̅𝑅𝑀4
  113192.1 504.8525 

𝑦̅𝑅𝑀5
  107214.2 503.8002 

𝑦̅𝑁𝑖
  17779.08 93.37644 

Table 4: PRE for population 1 
𝑦̅𝐾𝐶1

𝑦̅𝑟𝑜𝑏1

× 100

= 105.7363 

𝑦̅𝐾𝐶2

𝑦̅𝑟𝑜𝑏2

× 100

= 105.7347 

𝑦̅𝐾𝐶3

𝑦̅𝑟𝑜𝑏3

× 100

= 105.6765 

𝑦̅𝐾𝐶4

𝑦̅𝑟𝑜𝑏4

× 100

= 105.7363 

𝑦̅𝐾𝐶5

𝑦̅𝑟𝑜𝑏5

× 100

= 105.7091 
𝑦̅𝐾𝐶1

𝑦̅𝑅𝑀1

× 100

= 139.7062 

𝑦̅𝐾𝐶2

𝑦̅𝑅𝑀2

× 100

= 139.6261 

𝑦̅𝐾𝐶3

𝑦̅𝑅𝑀3

× 100

= 138.0553 

𝑦̅𝐾𝐶4

𝑦̅𝑅𝑀4

× 100

= 139.7035 

𝑦̅𝐾𝐶5

𝑦̅𝑅𝑀5

× 100

= 138.8067 
𝑦̅𝐾𝐶1

𝑦̅𝑁𝑖
 

× 100

= 889.6276 

𝑦̅𝐾𝐶2

𝑦̅𝑁𝑖
 

× 100

= 883.9565 

𝑦̅𝐾𝐶3

𝑦̅𝑁𝑖
 

× 100

= 804.9198 

𝑦̅𝐾𝐶4

𝑦̅𝑁𝑖
 

× 100

= 889.4348 

𝑦̅𝐾𝐶5

𝑦̅𝑁𝑖
 

× 100

= 837.0538 
𝑦̅𝑟𝑜𝑏1

𝑦̅𝑁𝑖
 

× 100

= 841.3643  

𝑦̅𝑟𝑜𝑏2

𝑦̅𝑁𝑖
 

× 100

= 836.0137 

𝑦̅𝑟𝑜𝑏3

𝑦̅𝑁𝑖
 

× 100

= 761.683 

𝑦̅𝑟𝑜𝑏4

𝑦̅𝑁𝑖
 

× 100

= 841.1823 

𝑦̅𝑟𝑜𝑏5

𝑦̅𝑁𝑖
 

× 100

= 791.8463 
𝑦̅𝑅𝑀1

𝑦̅𝑁𝑖
 

× 100

= 636.7847  

𝑦̅𝑅𝑀2

𝑦̅𝑁𝑖
 

× 100

= 633.0881 

𝑦̅𝑅𝑀3

𝑦̅𝑁𝑖
 

× 100

= 583.0416 

𝑦̅𝑅𝑀4

𝑦̅𝑁𝑖
 

× 100

= 636.6588 

𝑦̅𝑅𝑀5

𝑦̅𝑁𝑖
 

× 100

= 603.0357 
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Table 5: PRE for population 2 
𝑦̅𝐾𝐶1

𝑦̅𝑟𝑜𝑏1

× 100

= 121.7377 

𝑦̅𝐾𝐶2

𝑦̅𝑟𝑜𝑏2

× 100

= 121.7377 

𝑦̅𝐾𝐶3

𝑦̅𝑟𝑜𝑏3

× 100

= 121.7314 

𝑦̅𝐾𝐶4

𝑦̅𝑟𝑜𝑏4

× 100

= 121.7371 

𝑦̅𝐾𝐶5

𝑦̅𝑟𝑜𝑏5

× 100

= 121.7014 
𝑦̅𝐾𝐶1

𝑦̅𝑅𝑀1

× 100

= 136.9025 

𝑦̅𝐾𝐶2

𝑦̅𝑅𝑀2

× 100

= 136.9025 

𝑦̅𝐾𝐶3

𝑦̅𝑅𝑀3

× 100

= 136.8862 

𝑦̅𝐾𝐶4

𝑦̅𝑅𝑀4

× 100

= 136.9008 

𝑦̅𝐾𝐶5

𝑦̅𝑅𝑀5

× 100

= 136.8085 
𝑦̅𝐾𝐶1

𝑦̅𝑁𝑖
 

× 100

= 740.2093 

𝑦̅𝐾𝐶2

𝑦̅𝑁𝑖
 

× 100

= 740.2093 

𝑦̅𝐾𝐶3

𝑦̅𝑁𝑖
 

× 100

= 739.8475 

𝑦̅𝐾𝐶4

𝑦̅𝑁𝑖
 

× 100

= 740.1731 

𝑦̅𝐾𝐶5

𝑦̅𝑁𝑖
 

× 100

= 738.132 
𝑦̅𝑟𝑜𝑏1

𝑦̅𝑁𝑖
 

× 100

= 608.0363  

𝑦̅𝑟𝑜𝑏2

𝑦̅𝑁𝑖
 

× 100

= 608.0363 

𝑦̅𝑟𝑜𝑏3

𝑦̅𝑁𝑖
 

× 100

= 607.7704 

𝑦̅𝑟𝑜𝑏4

𝑦̅𝑁𝑖
 

× 100

= 608.0097 

𝑦̅𝑟𝑜𝑏5

𝑦̅𝑁𝑖
 

× 100

= 606.5106 
𝑦̅𝑅𝑀1

𝑦̅𝑁𝑖
 

× 100

= 540.6837 

𝑦̅𝑅𝑀2

𝑦̅𝑁𝑖
 

× 100

= 540.6837 

𝑦̅𝑅𝑀3

𝑦̅𝑁𝑖
 

× 100

= 540.4837 

𝑦̅𝑅𝑀4

𝑦̅𝑁𝑖
 

× 100

= 540.6637 

𝑦̅𝑅𝑀5

𝑦̅𝑁𝑖
 

× 100

= 539.5367 

4.3.  Interpretation. 

The interpretation is provided in the following upcoming points:  

1. Estimators (𝑦̅𝑟𝑜𝑏1
, … , 𝑦̅𝑟𝑜𝑏5) are performing better than (𝑦̅𝐾𝐶1

, … , 𝑦̅𝐾𝐶5). 

2. Estimators (𝑦̅𝑅𝑀1
, … , 𝑦̅𝑅𝑀5) is performing better than (𝑦̅𝐾𝐶1

, … , 𝑦̅𝐾𝐶5). 

3. Estimator 𝑦̅𝑁𝑖
 is performing better than (𝑦̅𝐾𝐶1

, … , 𝑦̅𝐾𝐶5), (𝑦̅𝑟𝑜𝑏1
, … , 𝑦̅𝑟𝑜𝑏5) and (𝑦̅𝑅𝑀1

, … , 𝑦̅𝑅𝑀5).  

Thus, it can be seen from Tables 3, 4, and 5 that the proposed estimators are more effective than the 

current estimators under the SRS for the provided datasets. 

 

5. Conclusion 

In SRS, under the determined conditions, using the redescending M-estimator, a new robust 

regression type estimator has been proposed. Utilizing the numerical illustration it has also been 

demonstrated that the proposed estimator produces smallest MSE value as compared to the existing 

estimators. When data contain outliers, it is found that the proposed recommended robust mean 

estimator performs better than the reviewed estimators. 
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