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Abstract 

In this study, Least Trimmed Squares (LTS), Theil’s Pair-wise Median (Theil) and Bayesian estimation methods (BAYES) are 

compared relative to the OLSE via Monte-Carlo Simulation. Variance, Bias, Mean Square Error (MSE) and Relative Mean 

Square Error (RMSE) were calculated to evaluate the estimators’ performance. The Simple Linear Regression model is explored 

for the conditions in which the error term is assumed to be drawn from three error distributions: unit normal, lognormal and 

Cauchy. Theil’s non-parametric estimation procedure was found to have the strongest and most reliable performance. The 

subsequent-best results are acquired from LTS approach Though it was observed that the Bayesian estimators are affected by 

deviation of the dataset from normality, yet it is established from the results that the Bayesian estimators performed optimally 

more than all other competitors, even under non normal situations (especially under the standard lognormal distribution) in 

some cases, except whenever the error is drawn from a heavy tail distribution (Lognormal and Cauchy)..OLSE is most effective 

reliable as long as the normality assumptions preserve 
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1. Introduction 

Frequentist approach of linear regression yields a single estimate for the model parameters based only on the assumption that 

the model is absolutely influenced by the nature of the data set involved, Nevertheless, the methods of classical estimations of 

regression models’ squares is not robust to violations of any of its underlying assumptions. Estimates of Ordinary least square 

regression was heavily influence by any presence of outliers in data sets [1] Thus, researchers [2-4] among others developed 

practical alternative methods, which have been considered with numerous advantages over frequentist method of estimation.  

This research delved into other alternatives to Ordinary least square regression estimation procedures such as the Least Trimmed 

Squares (LTS) introduced by [5], Theil’s pairwise median procedure introduced in 1950. that assumes to performs better 

exclusive of the distribution of the error terms and the Bayesian inference method developed by [6], with further advancement 

by researchers such as [7-9] among others. 

The Bayesian approach methods of estimation necessitate the usage of probability distributions rather than point estimates in 

the expressions of linear regression models. It establishes the update of prior beliefs in the evidence of new data. Bayesian 

analysis aim is to determine the posterior distribution, and never to ascertain the “best” estimate for the parameters of the model 

which is the fundamental bedrock of Bayesian Inference. Trace back to 1980s, Bayesian methods have been widely used among 

researchers within statistics and have found usage in many fields due to the detection of Markov chain Monte Carlo methods 

[9]. [10] worked on simulation studies that compared the OLSE regression estimation with the Theil pairwise median and 

weighted Theil estimators using one hundred replications per situation.[11] used MCMC simulation to examine the regression 

estimates of  OLSE, Least Trimmed Squares (LTS) and Theil, along other frequentist regression estimators for the Simple 

Linear Regression model that have a Generalized Logistic  distribution  error term.[8]  considered different approaches to robust 

Bayesian inferencefor set identified structural vector autoregressions using numerical and empirical illustrations. [12] employed 

Bayesian estimation in determining the ranges of the quantiles that revealed the optimal hyperparameters from samples with 

vague facts in empirical Bayesian inference [13] expatiated the shortcomings of datasets showing multicollinearity using 

frequentist approach and discusses the Bayesian approach which serve as a relief to some of the problems outfaced by the 

multiple regression approach. [14] developed a new non parametric hypothesis testing with reliability analysis applications to 
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model some real data using lifetime distribution theory and Monte Carlo Simulations.  

Very little research from the literature captures works in which the Bayesian method to linear regression is directly compared 

to Robust-non-parametric alternatives. The current study investigates the conduct of robust regression and Bayesian inference 

techniques to Simple Linear Regression under three different conditions in relation to contaminated data and non-normal error 

distributions. 

2. Methodology 

2.1  Simulation Design 

The study design employs a Monte-Carlo simulation approaches, the scheme of the explanatory variable X is created as a 

consecutive model of the structure 𝑋𝑡 =  𝑡;  𝑡 = 1,2,3, … , 𝑛, while the response variable Y is generated as a form of linear model 

 𝑌𝑡 =  + 𝑋𝑡 + 𝑡  (for  = 0 and  = 1). 150,000 sets of random data of sample sizes 𝑛 = 30 and 500 were simulated, the 

random component t was assumed to be drawn three different types of error distribution namely Normal, Lognormal and 

Cauchy. The Monte Carlo simulations procedures using MATLAB generates random values with the original data by setting 

the number of simulations and the distribution parameters according to distribution type. 

The following iterative procedures was adopted; 

i. Set up the predictive model and identify both the dependent variable and the drive of the prediction which is 

the independent variables and define every inputs. 

ii. Specify the probability distributions. 

iii. Set up the number of simulations. 

iv. Run simulations repeatedly by generating the random values of the independent variables. 

v. Aggregate and assess the outputs from the simulations. 

vi. Estimate the parameters such as the mean, standard deviation among others.  

vii. Draw conclusions. 

2.2 Choice of Error Distributions 

Two heavy tailed distributions namely Cauchy and Lognormal distributions were used to inspect the efficiency of each 

estimator as the dataset deviates from normality. However, the Cauchy distribution has the properties of heavier tails than the 

Log-normal distribution. Sensitivity of each estimation methods to outliers were examined by alternative forms of the error 

distributions (mixture, outlier and contamination). Detailed information on this technique, and procedures for drawing random 

deviates from each of the error distributions, under this study had been discussed in [15]. 

2.3 Estimation Procedures 

For all simulated records set the estimate of  and  were estimated using the four estimation approaches earlier described, for 

every estimator, the validation statistic such as the average, the variance, the bias and the mean square error were computed. 

The mean square error (MSE) was estimated as: 

 𝑀𝑆𝐸 () = 𝑉𝑎𝑟 ()  + [𝐵𝑖𝑎𝑠 ()]2.  

Previous literatures such as [16-17] described the details on the algorithms and method of estimations using these estimators. 

However, brief procedure of each estimator is reviewed below: 

2.4  Ordinary Least Squares Method 

OLS method of estimation is a classical technique for estimating coefficients in a linear regression model by minimizing the 

sum of squared errors. This yields an estimation of the mean function of the dependent variables which is conditionally 

distributed. Ordinary Least Squares Method accomplished the property of Best, Linear and Unbiased Estimator (BLUE), if 

it eXY                            (1) 

where  

Y is the response variable, 

tX   is the 
tht  of the matrix 𝑋, 

ie  is the error terms. 

 then following assumptions hold. 

- The relationship between Y and X requires that the dependent variable (Y) is a linear combination of explanatory 

variable and error term 

- The independent variable Xi is non-Stochastic. 

- Homoscedacity of the residuals. 

- No Serial correlation of the error terms. 

- Normally distributed residuals. 

However, frequently one or more of these assumptions are violated, it results in OLS not any more the best linear unbiased 
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estimator. However, these assumptions are stringent such that if any one of the assumptions is not met, OLSE procedure breaks 

down. 

2.5 The Least Trimmed Squares (LTS) 

The Least Trimmed Squares (LTS)  introduced by [5] aims at minimizing ∑ (𝑦𝑖 − 𝛼̂ − 𝛽̂𝑥𝑖)
2ℎ

𝑖=1  by choosing a subsample of h 

observations, computing some  and  that minimize the sum of squared errors for the chosen subsample after which deleting 

sets of data related to a selected percent of the prevalent residuals underneath an preliminary OLSE to reduce their adverse 

results on the inferences[11]. Consequently, the significant disparity amid OLSE and LTS estimation is that LTS method of 

estimation is not really affected by the outliers due to presence of large squares errors.[11] 

2.6 Theil’s Pair-Wise Median Methods 

The Theil’s method is a non-parametric procedure based on using the ranks of the observed data rather than using the actual 

values of the observed data [11],[4] pairwise style comparison is done to each data pair and all other in computing the complete 

Theil’s slope estimate. A data set of 𝑛(𝑋, 𝑌) pairs will result in N = (n

2
)= 

n(n-1)

2
 pairwise comparisons, for each of these a slope 

∆𝑌

∆𝑋
 is computed. The median of all possible pairwise slopes is taken as the non-parametric Theil’s slope estimate, 𝛽𝑇𝐻𝐸𝐼𝐿, where; 

𝑏𝑖𝑗 =  
∆𝑌

∆𝑋
=  

𝑦𝑖−𝑦𝑗

𝑥𝑗−𝑥𝑖
;  𝑥𝑗 ≠ 𝑥𝑖; 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. The y-interceptis obtained by calculating; 𝑎𝑖𝑗 =

𝑥𝑗𝑦𝑖−𝑥𝑖𝑦𝑗

𝑥𝑗−𝑥𝑖
;  𝑥𝑗 ≠ 𝑥𝑖;𝑖<𝑗 and taking 

the median of these 𝑎𝑖𝑗  values as the y-intercept.  

 2.7 Bayesian Inference Method 

The application of Bayesian estimation requires a probabilistic reformulation of the Simple Linear Regression model based on 

major fundamental assumptions of classical regression models. To achieve this, the response variable Y, and the model 

parameters ,  and  are assumed to come from a predetermined (prior) distribution. Moreover, an appropriate specified 

likelihood function component is the part that incorporates the data.  

The posterior probability of the model parameters is conditional upon the training inputs and outputs using the prior belief and 

the likelihood of the model given the data. 

𝑃(𝛽|𝑦, 𝑋)  =  𝑃(𝑦|𝛽, 𝑋)  ∗  𝑃(𝛽|𝑋)𝑃(𝑦|𝑋).                                                        (2)                             

Here; 𝑃(𝛽|𝑦, 𝑋) is the posterior probability distribution of the model parameters. This is equal to the likelihood of the data, 

𝑃(𝑦|𝛽, 𝑋), multiplied by the prior probability of the parameters and divided by a normalization constant. 

 The joint likelihood of the 𝑖𝑡ℎ, denoted 𝐿𝑖: 

Li (𝛼𝑥̅ , 𝛽)  ∝  exp (−
1

2
(

(𝑦𝑖−(𝛼𝑥̅+𝛽(𝑥𝑖−𝑥̅))
2

𝜎2 )        (3) 

                                       

 The joint likelihood of the whole sample of all observations is the product of the independent likelihoods 

Lsample (𝛼𝑥̅  , 𝛽)  ∝  𝑖=1
𝑛 exp (−

1

2
(

(𝑦𝑖−(𝛼𝑥̅+𝛽(𝑥𝑖−𝑥̅))
2

𝜎2 ).    (4)                                                                     

Which is simplified to 

     𝑆𝑆𝑦 +  2𝛽𝑆𝑆𝑥𝑦 + 𝛽2𝑆𝑆𝑥 +  𝑛(𝛼𝑥̅ − 𝑦̅ )2,     (5) 

Where        𝑆𝑆𝑦 =  𝑖=1
𝑛 (𝑦𝑖 − 𝑦̅)2;           (6)  

     𝑆𝑆𝑥𝑦 =  𝑖=1
𝑛 (𝑦𝑖 − 𝑦̅)(𝑥𝑖 − 𝑥̅);           (7)         

      𝑆𝑆𝑥 = (𝑥𝑖 − 𝑥̅)2           (8) 

   

Thus, the joint likelihood of sample is;  

Lsample (𝛼𝑥̅ , 𝛽)  exp (−
1

2
(

(𝑆𝑆𝑦 − 2𝛽𝑆𝑆𝑥𝑦 + 𝛽2𝑆𝑆𝑥 +  𝑛(𝛼𝑥̅ − 𝑦̅)22

𝜎2
) 

              exp (−
1

2
(

(𝑆𝑆𝑦−2𝛽𝑆𝑆𝑥𝑦+ 𝛽2𝑆𝑆𝑥)

𝜎2 )exp (−
1

2
(

𝑛(𝛼𝑥̅−𝑦̅ )2

𝜎2 )     (9) 

                                                                     

Factorizing 𝛽𝑆𝑆𝑥 and completing the squares; 

Lsample (𝛼𝑥̅  , 𝛽)  exp (−
1

2𝜎2

𝑆𝑆𝑥

(𝛽 − B)2 x exp (−
1

2𝜎2

𝑛

(𝛼𝑥̅ − A𝑥̅)2,   (10)                                            

where; 
𝑆𝑆𝑥𝑦

𝑆𝑆𝑥
= B (the least squares slope); and 𝑦̅ = A𝑥̅ (the least squares intercept) 

The joint prior of 𝛼𝑥̅ and 𝛽 is the product of the individual prior defined as 

𝐺(𝛼𝑥̅, 𝛽)  =  𝐺(𝛼𝑥̅) 𝑥 𝐺(𝛽).                                   (11) 

By Bayes’ rule, the joint posterior is proportional to the joint likelihood multiplied by the joint prior  
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𝐺(𝛼𝑥̅ , 𝛽|𝑑𝑎𝑡𝑎)  𝐺(𝛼𝑥̅ , 𝛽) 𝑥 𝐿𝑠𝑎𝑚𝑝𝑙𝑒  (𝛼𝑥̅  , 𝛽)         (12) 

where the data is the set of ordered pair (𝑋𝑖 , 𝑌𝑖).  

𝐺(𝛼𝑥̅ , 𝛽|𝑑𝑎𝑡𝑎)  𝐺(𝛼𝑥̅|𝑑𝑎𝑡𝑎) 𝑥 𝐺(𝛽|𝑑𝑎𝑡𝑎)     (13)                                                          

The marginal posteriors are independent and can be found by the simple updating rules for normal distributions: 

Given (𝑚𝛽 , 𝑠𝛽
2) prior for β, then the posterior is; 𝑁(𝑚𝛽

′ , (𝑠𝛽
′ )2); where 

      
1

(𝑠𝛽
′ )2  =  

1

𝑠𝛽
2  +  

𝑆𝑆𝑥

𝜎2          (14) 

                     𝑚𝛽
′  =  

1

𝑠𝛽
2

1

(𝑠𝛽
′ )2

 x 𝑚𝛽  +  
𝑆𝑆𝑥
𝜎2
1

(𝑠𝛽
′ )2

 x B        (15) 

  

Also, Given (𝑚𝛼𝑥̅
, 𝑠𝛼𝑥̅

2 ) prior for 𝛼𝑥̅, then the posterior is; 

 𝑁(𝑚𝛼𝑥̅
′ , (𝑠𝛼𝑥̅

′ )2) 

 where 

                           
1

(𝑠𝛼𝑥̅
′ )2  =  

1

𝑠𝛼𝑥̅
2  +  

𝑛

𝜎2 ;        (16) 

 and   

        𝑚𝛼𝑥̅ 
′  =  

1

𝑠𝛼𝑥̅
2

1

(𝑠𝛼𝑥̅
′ )2

 x 𝑚𝛼𝑥̅
 +  

𝑛

𝜎2
1

(𝑠𝛼𝑥̅
′ )2

 x A𝑥̅        (17) 

  

For the explicit cases of this work, the probabilistic reframe of the regression model parameters presumes a conjugate Normal 

prior distribution that has mean 𝜇 with the regression slope parameter  and the regression intercept parameter . The prior 

standard deviation was calculated as 

       (
(𝑚′+3𝜎)−(𝑚′−3𝜎)

6
)

2

                 (18) 

where  is the OLSE sample estimate, while employing the Normal probability distribution density 

(N(,)) 
exp (

−(𝑥−)2

22

(2𝜋)
1
2

)       (19) 

as the likelihood of the data across the simulation. 

 

3. Simulation Results and Discussions  

Tables 1A, 1B, and 2A, 2B shows the results across sample sizes. Estimator variances for both the intercept and the slope 

parameters decreased with increasing sample size. All forms of the error distribution records decrease in 𝜎2 and bias, the pattern 

is also revealed in the mean square error’s values.  

Selected slope estimators are approximately unbiased. There is a consistent improvement in the pattern of performance of error 

distribution and respective alternate models as there is a noticeable increase in the size of the sample. Results of the research 

study reveals that OLSE and Bayesian slope estimators are always biased with Cauchy distributed error term regardless of 

sample size (though the performance improve with increasing sample size) 
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TABLE 1A: GENERAL ESTIMATORS’ PERFORMANCE RESULTS CHART FOR SOME REGRESSION ESTIMATORS 

(SAMPLE SIZE 𝑁 = 30) 

Tables 1A gives the general estimators’ performance results chart for Regression Estimators of standard model and the 

models with outlier of some error distribution with sample size 𝑛 = 30. The Least Trimmed Squares estimation approach 

followed Theil’s underneath the normal distribution for sample size 𝑛 = 30, the result discovered the father away the error 

distribution diverges from normality, the more efficient LTS turs into as it acquires more accuracies following closely after 

Theil’s while replacing Bayesian estimator and OLSE absolutely. Also, it was observed that the Theil’s estimator revealed the 

most satisfactory performance across all the cells of the simulation followed closely by LTS estimator (except whenever the 

sample size is very small). The Bayesian estimator maintained consistent relative unbiased-ness only under the standard and 

mixture normal error model. This confirms the elusiveness of the OLSE when the data set is heteroscedastic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

STANDARD MODEL 

NORMAL 

N=30 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE -0.0196 0.047 0.0196 0.477 0.000 0.995 0.012 -0.005 0.012 0.000 0.808 1.180 

LTS 0.0314 0.454 0.0314 0.452 -0.218 0.991 0.015 0.008 0.015 -0.218 0.790 1.190 

THL 0.0059 0.083 0.0059 0.083 -0.039 0.996 0.004 -0.005 0.004 -0.039 -5.571 7.700 

BAYES 0.0188 0.375 0.0188 0.376 0.0031 0.995 0.015 -0.005 0.015 0.031 0.800 1.190 

LOGNORMAL 

N=30 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE 1.660 2.180 1.660 2.180 1.020 0.997 0.052 0.003 0.052 1.000 0.024 1.760 

LTS 1.020 0.750 1.020 0.750 0.504 1.010 0.025 0.033 0.025 0.050 0.022 2.000 

THL 1.130 0.674 1.130 0.674 0.699 1.000 0.015 0.001 0.015 0.009 -2.85 4.850 

BAYES 1.560 2.160 1.560 2.160 0.690 0.997 0.053 0.003 0.053 0.027 0.602 1.390 

CAUCHY 

N=30 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLS -0.390 1.520 -3.900 1.520 0.000 7.260 3.160 6.260 3.160 0.000 -2.130 3.590 

LTS -0.009 4.130 -0.009 4.130 1.000 0.972 5.090 -0.028 5.090 1.000 -4.331 4.520 

THL -0.130 -4.390 -0.133 -4.390 0.000 1.030 1.450 0.026 1.450 0.000 -3.271 3.470 

BAYES -0.901 1.501 -3.920 1.501 1.080 7.260 3.160 6.218 3.160 0.010 4.840 9.680 

OUTLIERS MODEL 

NORMAL 

N=30 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE -0.141 2.170 -0.142 2.170 0.000 1.010 0.385 0.207 0.385 0.000 -8.220 2.860 

LTS -0.034 6.320 -0.031 6.320 0.653 1.000 0.134 0.005 0.134 0.654 -1.690 3.700 

THL 0.011 -4.400 0.011 -4.400 0.796 1.000 0.079 0.003 0.079 0.797 -2.440 4.440 

BAYES -0.104 2.130 -0.104 2.130 0.022 1.020 0.394 0.021 0.394 0.021 0.484 1.640 

LOGNORMAL 

N=30 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE 1.260 2.190 1.260 2.190 0.000 -1.720 4.070 -1.720 4.070 0.000 0.000 1.920 

LTS 1.680 6.650 1.680 6.650 1.000 -2.240 1.301 -2.340 1.301 1.000 -2.260 2.210 

THL 1.030 -7.330 1.830 -7.330 -7.000 0.918 0.090 -8.260 0.090 0.000 0.244 1.590 

BAYES 1.260 2.193 1.261 2.193 -0.001 -1.721 4.070 -1.720 4.070 -0.002 0.001 1.720 

CAUCHY 

N=30 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE 7.510 1.000 7.510 1.000 0.003 -0.004 1.892 -1.012 1.896 0.000 -2.569 2.564 

LTS 0.102 3.559 0.102 3.559 0.996 0.986 7.512 0.0145 7.513 0.996 -6.074 6.096 

THL -0.166 0.283 -0.107 0.283 0.004 1.025 0.439 0.0240 0.440 0.000 -5.245 5.261 

BAYES 7.514 1.003 7.515 1.003 0.003 -0.004 1.892 -0.011 1.089 0.003 -7.251 7.247 
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TABLE 1B: GENERAL ESTIMATORS’ PERFORMANCE RESULTS CHART FOR SOME REGRESSION ESTIMATORS 

(SAMPLE SIZE N=30) 

Tables 1B gives the general estimators’ performance results chart for Regression Estimators of mixture models and the models 

with contaminations of some error distribution with sample size 𝑛 = 30. From the results, Theil’s slope estimator outperformed 

every other estimator regardless of sample size or distribution, OLSE slope estimator was better than LTS when sample size is 

small (𝑛50).; Bayesian point estimator is more efficient with the normal distribution but relented whenever the error term is 

lognormal or Cauchy distributed. Theils estimator performed well regardless of the distribution type and under non-normal 

error distribution situation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MIXTURE MODEL 

NORMAL 

N=30 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE 0.009 0.466 0.003 0.464 0.000 1.000 0.121 0.000 0.121 0.100 0.731 1.270 

LTS 0.000 0.435 0.005 0.435 -0.218 1.000 0.014 0.002 0.014 0.022 0.635 1.360 

THL 0.002 0.063 0.000 0.063 -0.140 1.000 0.002 0.000 0.002 -0.142 -4.0000 6.000 

BAYES 0.008 0.303 0.001 0.368 0.003 1.000 0.012 0.000 0.012 0.032 0.766 1.230 

LOGNORMAL 

N=30 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE 1.708 2.380 1.750 2.380 0.000 0.9851 0.059 -0.014 0.059 0.000 0.421 1.550 

LTS 1.080 0.878 1.080 0.878 5.301 1.000 0.028 0.003 0.028 0.530. 0.044 1.960 

THL 1.190 0.766 1.190 0.766 1.130 0.990 0.078 -0.007 0.078 0.003 -2.020 4.000 

BAYES 1.650 2.370 1.650 2.370 6.453 0.985 0.058 -0.015 0.058 0.006 0.646 1.320 

CAUCHY 

N=30 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE 0.690 6.280 0.690 6.280 0.000 0.978 1.120 -0.022 1.120 0.000 2.700 2.890 

LTS 0.076 6.390 0.076 6.390 0.998 1.000 0.238 0.0083 0.238 0.998 -0.462 4.620 

THL 0.046 3.500 0.045 3.500 0.000 0.980 0.020 -0.002 0.020 0.000 -3.310 3.510 

BAYES 0.689 6.280 0.689 6.280 0.000 0.938 1.120 -0.025 1.120 0.000 -1.420 3.370 

CONTAMINATIONS MODEL 

NORMAL 

N=30 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE 0.012 0.455 0.012 0.455 0.000 0.998 0.011 -0.002 0.011 0.000 0.808 1.190 

LTS 0.005 0.422 0.008 0.422 -0.248 1.000 0.014 0.001 0.014 -0.248 0.781 1.220 

THL 0.007 0.039 0.008 0.039 -0.105 1.000 0.013 0.001 0.013 -0.147 -4.150 6.150 

BAYES 0.008 0.358 0.009 0.358 0.032 0.998 0.011 -0.002 0.011 0.032 0.802 1.190 

LOGNORMAL 

N=30 ALPHA 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE 1.600 2.430 1.600 2.430 0.000 1.010 0.066 0.0101 0.066 0.000 -0.283 2.300 

LTS 0.982 0.783 0.982 0.783 0.541 1.030 0.027 0.026 0.027 0.549 -0.777 2.830 

THL 1.130 0.729 1.130 0.729 0.004 1.010 0.017 0.006 0.017 0.044 -2.950 4.970 

BAYES 1.510 2.410 1.510 2.410 0.007 1.010 0.066 0.017 0.066 0.057 0.497 1.530 

CAUCHY 

N=30 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE -4.400 1.550 -4.400 1.550 0.000 1.650 4.570 0.065 4.570 0.000 -0.631 3.930 

LTS 0.104 4.060 0.104 4.060 1.000 0.9920 0.214 -0.008 0.214 1.000 -2.170 4.160 

THL 0.099 0.340 -0.099 0.340 1.000 0.9901 0.144 -0.010 0.144 0.000 -8.020 1.000 

BAYES -4.400 1.554 -4.400 1.554 0.000 1.6500 4.570 0.650 4.570 0.000 0.967 2.330 
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TABLE 2A: GENERAL ESTIMATORS’ PERFORMANCE RESULTS CHART FOR SOME REGRESSION ESTIMATORS 

(SAMPLE SIZE 𝑁 = 500) 

 

Tables 2A gives the general estimators’ performance results chart for Regression Estimators of standard model and the 

models with outlier of some error distribution with sample size 𝑛 = 500. Theil’s and LTS estimators gave negative RMSE 

values without regards for the sample size except under outlier error model as long as the error distribution is normal, but as 

the sample size increases and the error term deviates further from normality, Theil’s gains precision and its MSE values were 

approximately equal with that of OLSE when the sample size is very large. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 2B: GENERAL ESTIMATORS’ PERFORMANCE RESULTS CHART FOR SOME REGRESSION ESTIMATORS 

STANDARD MODEL 

 

NORMAL 

N=500 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE -0.006 0.012 -0.006 0.012 0.000  1.000 0.000 0.000 0.000 0.000 0.999 1.000 

LTS -0.011 0.012 -0.011 0.012 -0.227 1.000 0.000 0.000 0.000 -0.227 0.999 1.000 

THL -0.001 0.005 -0.008 0.005 -0.027 1.000 0.000 0.000 0.000 -0.027 -1.500 1.700 

BAYES -0.006 0.012 -0.006 0.012 0.000 1.000 0.000 0.000 0.000 0.000 0.999 1.000 

LOGNORMAL 

N=500 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE 1.000 UCL 

OLSE 1.600 0.048 1.620 0.048 0.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 

LTS 1.090 0.023 1.000 0.023 0.396 1.000 0.000 0.000 0.000 0.320 1.000 1.000 

THL 1.000 0.078 1.000 0.078 0.002 1.000 0.000 0.000 0.000 0.000 -1.000 1.900 

BAYES 1.610 0.038 1.61 0.038 0.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 

CAUCHY 

N=500 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE -2.481 8.853 -2.481 8.853 0.000 1.100 0.100 0.111 0.100 0.000 0.454 1.770 

LTS -0.701 1.410 -0.470 1.410 1.000 1.000 0.000 0.002 0.000 0.000 0.249 1.760 

THL 0.002 0.050 0.100 0.050 0.000 1.000 0.000 0.001 0.000 0.000 -2.170 2.371 

BAYES 2.401 8.850 2.401 8.850 0.000 1.200 0.000 0.113 0.000 0.000 1.090 1.140 

OUTLIERS MODEL 

NORMAL 

N=500 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE -0.001 0.012 -0.001 0.012 0.000 1.0000 0.000 0.000 0.000 0.000 0.999 1.000 

LTS -0.010 0.158 -0.010 0.158 0.224 1.0000 0.000 0.000 0.000 -0.224 0.999 1.000 

THL -0.005 0.015 -0.005 0.015 0.001 1.0000 0.000 0.000 0.000 0.000 -1.450 1.650 

BAYES -0.001 0.280 -0.001 0.280 0.000 1.0000 0.000 0.000 0.000 0.000 0.999 1.000 

LOGNORMAL 

N=500 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE 1.660 0.004 1.660 0.004 0.000 1.000 0.000 0.000 0.000 0.000 0.999 1.000 

LTS 1.140 0.037 1.140 0.037 0.095 1.000 0.000 0.000 0.000 0.095 0.999 1.000 

THL 1.020 0.011 1.020 0.011 0.008 1.050 0.000 0.000 0.000 0.008 -0.142 1.150 

BAYES 1.660 0.040 1.660 0.040 0.000 1.000 0.000 0.000 0.000 0.000 0.999 1.000 

CAUCHY 

N=500 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE -3.180 1.610 -3.180 1.610 0.000 1.020 0.005 0.022 0.005 0.000 0.802 1.240 

LTS -0.107 0.801 -0.107 0.801 0.990 1.000 0.000 0.000 0.000 0.996 0.747 1.260 

THL -0.028 0.047 -0.028 0.047 0.000 1.000 0.000 0.000 0.000 0.000 -1.510 1.711 

BAYES -3.180 1.610 -3.180 1.610 0.000 1.020 0.005 0.022 0.005 0.000 1.010 1.040 
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(SAMPLE SIZE 𝑁 = 500) 

Tables 2B gives the general estimators’ performance results chart for Regression Estimators of mixture models and the models 

with contaminations of some error distribution with sample size 𝑛 = 500. With the insertion of contaminations into the dataset, 

it's far noticed that every estimator remained noticeably unbiased. However, OLSE and Bayesian estimators were found to 

maintain steady unbiased-ness handiest for both large and small trial size (for outliers’ model) and regular biased-ness (for 

contamination model) pattern length notwithstanding. Under this circumstance, LTS estimator stayed on pinnacle maximum of 

the time (maximum specifically each time the error time period is Cauchy allotted) with the least bias value, accompanied 

closely by means of Theil’s estimator and then the Bayesian factor estimator. 

3.1. Based on variance and RMSE criteria  

The Bayesian point estimator of the slope parameter , accompanied by the OLSE estimator, had the smallest 𝜎2  and therefore 

the minimum of mean square error with Normal distribution throughout all cells of the simulation and all sample sizes, aside 

the exception of under mixture and contamination error model for large sample size (𝑛 = 500) wherein Theil’s and LTS 

estimators led the way. As sample size increases, Bayesian and OLSE received precision i.e. the variance and the MSE values 

of each estimator lower with growing sample size. Ultimately the Bayesian point estimator converges to the OLSE as the 

sample size has a tendency to infinity. However, the Bayesian factor estimator maintained steady continuity in efficiency than 

the OLSE pattern regardless of the sample size. 

As the dataset diverge from normality, however, Bayesian estimator and OLSE looses precision to LTS and Theil’s estimators 

with nearly four hundred percent increment in the values of mean square error for samples with their distribution are lognormal 

and Cauchy. OLSE and Bayesian point estimator gave excessive large value for mean square errors compared with other 

estimators. This result affirms deviations from normality assumptions in reasons in which the OLSE is considered not to be an 

efficient estimator and thus its inappropriateness under non-normal conditions. 

The Least Trimmed Squares estimation method came next in view to Theil’s under the normal distribution for sample size n=30 

and as has been usually observed, it experiences a consistent decrease in its MSE as sample size gets larger. 

Theil’s and LTS estimators gave negative RMSE values without regards for the sample sizes besides under outlier error model. 

But as the sample size increases, the error term deviates further from Theil’s gain precision and its MSE values had been 

MIXTURE MODEL 

NORMAL 

N=500 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE 3.580 0.540 3.580 0.540 0.000 0.983 0.000 -0.000 0.000 0.000 0.958 1.010 

LTS 1.440 0.200 1.440 0.200 0.836 0.993 0.002 -0.001 0.048 8.360 0.960 1.030 

THL 0.909 0.077 0.909 0.077 0.931 0.996 0.000 -0.004 0.000 0.093 -2.470 2.670 

BAYES 3.580 0.520 3.580 0.520 0.000 0.983 0.000 -0.001 0.000 0.465 0.978 0.989 

LOGNORMAL 

N=500 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE 4.821 7.432 4.821 7.432 0.000 -2.211 C -2.211 -2.211 0.000 -6.071 5.631 

LTS 2.730 7.678 2.730 7.678 1.000 -1.280 1.681 -1.280 -1.280 1.000 -8.231 8.231 

THL 1.780 0.098 1.780 0.098 0.000 0.996 0.000 -0.003 0.996 0.000 -5.921 5.921 

BAYES 4.821 7.432 4.821 7.432 0.000 -2.2110 1.572 -2.211 -2.210 0.000 -2.210 2.211 

CAUCHY 

N=500 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ Var Bias MSE RMSE 𝑥̅ Var Bias MSE RMSE LCL UCL 

OLSE 3.800 1.275 3.800 1.275 0.000 0.827 3.010 -0.170 3.010 0.000 -1.780 1.780 

LTS 1.370 3.800 1.370 3.800 1.000 0.995 0.001 -0.053 0.001 1.000 -2.500 2.530 

THL 1.200 0.405 1.200 0.405 0.006 0.994 0.000 -0.057 0.000 0.006 -1.805 1.800 

BAYES 3.800 1.270 3.800 1.270 0.000 0.827 3.010 -0.173 3.010 0.000 -1.320 1.480 

CONTAMINATION MODEL 

NORMAL 

N=500 𝛼 BETA CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE 0.675 0.023 0.675 0.023 0.000 0.997 0.000 -0.003 0.000 0.000 0.995 0.998 

LTS 0.435 0.018 0.435 0.018 0.553 0.998 0.000 -0.002 0.000 0.553 0.996 1.000 

THL 0.381 0.024 0.381 0.024 0.037 0.998 0.000 -0.002 0.000 0.037 -1.540 1.740 

BAYES 0.673 0.023 0.673 0.023 0.000 0.997 0.000 -0.003 0.000 0.000 0.996 0.998 

5LOGNORMAL 

N=500 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE 1.240 0.053 1.240 0.053 0.000 1.000 0.000 0.003 0.000 0.000 0.990 1.010 

LTS 0.776 0.075 0.776 0.075 0.025 1.000 0.000 0.008 0.000 0.000 0.998 1.010 

THL 0.776 0.015 0.776 0.015 0.584 1.000 0.000 0.049 0.000 0.000 -0.176 1.960 

BAYES 1.240 0.053 1.240 0.053 0.000 1.000 0.002 0.002 0.002 0.000 0.996 1.000 

CAUCHY 

N=500 𝛼 𝛽 CREDIBLE 

INTERVAL 

METHOD 𝑥̅ 𝝈𝟐 Bias MSE RMSE 𝑥̅ 𝝈𝟐 Bias MSE RMSE LCL UCL 

OLSE 1.940 2.420 1.940 2.420 0.000 0.976 0.024 -0.024 0.024 0.000 0.799 1.020 

LTS 0.633 0.124 0.633 0.124 0.996 0.997 1.780 -0.034 1.780 0.999 0.869 1.130 

THL 0.509 0.036 0.509 0.036 1.000 0.997 0.226 -0.000 0.226 1.000 -9.980 1.200 

BAYES 1.940 2.422 1.940 2.422 1.000 0.976 0.024 -0.024 0.024 1.000 0.889 0.939 
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approximately equal with that of OLSE whilst the sample size is very massive. The Least Trimmed Squares estimation approach 

followed Theil’s underneath the normal distribution for sample size n=30.the result discovered the father away the error 

distribution diverges from normality, the more efficient LTS turs into as it acquires more accuracies following closely after 

Theil’s while replacing Bayesian estimator and OLSE absolutely. 

3.2  Effect of contamination 

3.2.1  Y-intercept estimators’ performance 

The overall performance of the regression y-intercept estimators for every of the methods was observed to obey similar outline 

of slope estimators, but for some remarkable variations. The results shows that the intercept of Bayesian and OLSE approach 

of estimations gives more accurate precisions than the intercept of LTS and Theils methods of estimation irrespective of their 

sizes as much as normality assumptions holds. Theils and LTS is still efficient with non-normal assumptions especially with 

Cauchy error distribution.  The Bayesian estimators consistently maintains a higher precision about the true value of the 

regression parameters compared to all other estimators under consideration. 

3.3  Empirical Data Analysis  

Regression analysis was carried out on the dataset for 𝑛 = 10 years (2010 − 2021), 𝑛 =  30 years (1991 − 2021) and 𝑛 =

 50 years (1971 − 2021) respectively of Nigeria Gross Domestic Product and Gross National Income. Table 6 shows the 

regression parameter estimates for the dataset using the previously discussed methods. The prior parameter for the intercept 

and slope parameters is obtained as the OLSE estimates for the intercept and slope parameter of the data ten years before the 

years in view. The variances for both parameters were calculated as: 

(
(𝑚′+3𝜎)−(𝑚′−3𝜎)

6
)

2

         (20) 

where  is the OLSE sample estimate. 

 

TABLE 3: EMPIRICAL ANALYSIS OF GROSS DOMESTIC PRODUCT AND GROSS NATIONAL INCOME USING 

SELECTED REGRESSION TECHNIQUES 

                     DATA WITH NO CONTAMINATION                        DATA WITH 20% 

CONTAMINATION 

 𝛼 𝛽 C. INTER (𝜷) MODEL 𝛼 𝛽   C. INTER 

(𝜷) 

 

MODEL 

ESTIMAT

ORS 

Mean 

(S.Dev) 

Mean 

(S.Dev) 

LCL UCL BIAS MSE Mean 

(S.Dev) 

Mean 

(S.Dev) 

LCL UCL BIAS RMSE 

n =10 

OLSE 676.2 

(345.0) 

0.6994 

(0.138) 

-48.2 49.6 -0.0 92494. -5471.3 

(2550.) 

3.3231 

(1.022) 

-2669 2676 -0.0 208801 

LTS 392.0 

(318.5) 

0.7741 

(0.149) 

-59.6 61.1 -100. 12435. -1101.9 

(3188.) 

1.4479 

(1.641) 

-5083 5086 -238. 453453 

THELS 660.8 

(1030.) 

0.7033 

(0.418) 

-48.2 436.6 -5.9 93557. -519.2 

(450.4) 

1.1894 

(1.103) 

-2669 8393 -291. 352327 

BAYESIAN 676.2 

(60.1) 

0.6994 

(0.139) 

0.442 0.956 -0.0 92494. -5471.3 

(444.5) 

3.3321 

(1.022) 

1.422 5.224 -0.0 208800

1 

 n =30 

OLSE -5.7 

(0.27) 

0.9469 

(0.094) 

-6.6 8.5 -0.0 787175 -45.7 

(359.3) 

1.1506 

(0.219) 

-419. 421.9 -0.0 116230

7 

LTS 11.6 

(1.42) 

0.9056 

(0.036) 

-9.0 10.8 -38.1 721485 -31.7 

(386.8) 

0.9846 

(0.306) 

-602. 604.5 -208. 894615

.7 

THELS 11.316 

(O.167 

0.9031 

(0.211) 

-6.6 756.2 -41.8 717783 4.6 

(985.9) 

0.9059 

(0.419) 

-419. 1543 -278. 797771 

BAYESIAN -5.7 

(0.034) 

0.9469 

(0.029) 

0.896

9 

0.997

0 

0.0 78175.

8 

-45.7 

(205.7) 

1.1506 

(0.219) 

0.772 1.542 -0.0 116230

7.2 

 n = 50 

OLSE 43.045 

(0.932 

0.8960 

(0.036) 

-12.1 13.9 -0.0 592418 291.4 

(284.8) 

0.9523 

(0.206) 

-434. 436.2 0.0 669197 

LTS 33.341 

(0.662) 

0.8934 

(0.041) 

-14.1 15.8 -12.6 58122. 49.5 

(308.7) 

0.9238 

(0.245) 

-527 530.7 -272. 704069

.5 

THELS 9.800 

(0.452) 

0.9101 

(0.213) 

-12.1 466.5 -17.9 611519

.5 

53.7 

(408.2) 

0.8690 

(0.296) 

-434 895 -327 664607 

BAYESIAN 43.027 

(30.06) 

0.8960 

(0.036) 

0.836 0.956 0.0 592418

. 

291.4 

(177.2) 

0.9523 

(0.206) 

0.605 1.300 -0.0 669197 

 

 

 

 

 

3.3.1 Intercept Parameter Estimators’ Performance 
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For a very small sample size, 𝑛 = 10, the Bayesian estimates of the regression intercept parameter  has the least standard 

deviation (60.115). The LTS estimator put up a better performance with standard deviation 318.5068 than the OLSE estimator 

with standard deviation 345.0132. The standard deviation (1030.231) of the Theil’s estimator is particularly very large 

compared to OLSE and LTS.  However, as the sample size increases, OLSE and LTS improved significantly with almost 85.6% 

and 83.5% reduction in standard deviation respectively while Theil’s estimator improved with 53.9% reduction in standard 

deviation (𝑓𝑜𝑟 𝑛 = 30). When the sample size increased to 50, Theil’s estimator further improved with 71.2% reduction in 

standard deviation, OLSE and LTS had no significant improvement, while the Bayesian estimator remained consistently more 

efficient than all others regardless of sample size.  With 20% contamination in the data set, however, OLSE and LTS estimator 

lost significant precision with 468.0% and 526.8% increase in standard deviation respectively, while Theil’s estimators gave 

a better performance with 38.7% and the Bayesian estimator seems not to be significantly affected with just about 7.7% 

increase in the standard deviation. This ascertained the robustness characteristic of the Bayesian estimator to contamination in 

the dataset. 

3.3.2 Slope Parameter Estimators’ Performance 

For a very small sample size, 𝑛 = 10, it is observed from Table 3 that the Bayesian estimate for the regression slope parameter 

 has the least standard deviation (0.13825) outperforming the LTS and Theil’s estimators by 12.4% and 206.1% respectively. 

The OLSE estimator for slope parameter seems to agree with the Bayesian estimator for all sample sizes. With significant 

increase in sample size (𝑛 = 30), OLSE, LTS and Bayesian estimates improved significantly with 78.0%, 73.8% and 76.2% 

decrease in standard deviation respectively while the Theil’s estimator slightly improved with just about 29.7% reduction in 

standard deviation.  

With further increase in sample size (𝑛 = 50), the Theil’s estimator gained precision with a further 18.3% reduction in its 

standard deviation while the OLSE, LTS and Theil’s seem to be relatively consistent in their precision. With 20% 

contaminations in the dataset, however, the Theil’s estimator proved to be more robust than all others with just 37.6% reduction 

in its precision. This affirms the fact that OLSE estimator breaks down in the presence of outliers in the data set, thus, the 

Theil’s slope estimator maintained an overall and consistent robustness over all other slope estimators across board.  

3.3.3 Test of Hypothesis 

A two-sided hypothesis was erected for the regression slope parameter  as follows: 

𝐻𝑎𝛽 : 𝛽 = ξ          

Versus 

𝐻1𝛽 : 𝛽 ≠ ξ            (21)                                                                                         

(where 𝜉 = 0.8458, 0.2818, 0.4544 for 𝑛 = 10,30,50 respectively)  

Considering range of the confidence interval, in Table 3 above constructed for all estimators under consideration at  = 0.05, 

the confidence interval for OLSE, LTS and Theil’s estimator spans the corresponding value of ξ for each sample size. 

Furthermore, the intervals showed that the value of  could possibly be zero and as well could be negative. Thus, the test is not 

significant at  = 0.05 and we therefore cannot reject 𝐻𝑎 (𝛽 = ξ) and conclude that there exists a significant predictive 

relationship between GDP and GNI at  = 0.05 level of significance though the relationship is weakly quantified by the 

estimated values of the slope parameter respectively. 

However, the Bayesian credible interval provided strong evidence, in the light of both the data and the prior knowledge that 

the values 𝜉 = 0.2818 and 0.4544 are not tenable values of 𝛽, since the test is significant for both 𝜉 = 0.2818 and 0.4544, 

but 𝜉 = 0.8458 is a possible value of  since the test is not significant for 𝜉 = 0.8458 for both large and very small sizes. Also, 

the credible interval revealed a very strong opinion that  can neither possibly be zero nor negative in value. Thus, 0.8361   

 0.997 is a credible range of  at  = 0.05 and we could therefore conclude that there exists a significant predictive 

relationship between GDP and GNI at  = 0.05 level of significance and the relationship is strongly quantified by the estimated 

values of the slope parameter respectively. 

 Hence, the fitted Simple Linear Regression model for each of the estimation procedure is as follows: 

 Ordinary Least Square Estimation:  GNI =  43.00191 +  0.89603GDP 

 Least Trimmed Square Estimation:  GNI =  33.25113 +  0.89342GDP 

 Theil’s Estimation:                GNI =  09.82935 +  0.91013GDP 

 Bayesian Estimation:                GNI =  43.00191 +  0.89603GDP 

4.  Conclusion. 

Linear regression is characterized with the underlying assumption that error terms have a normal distribution, which leads 

OLSE procedure to give good inferences. However, in real life it is nearly impossible to discover set of data that satisfies the 

normality assumption. Moreso, with these conditions, OLSE yields lack of efficiency, alternative regression approaches are 

required. In this paper, some robust procedures for a simple linear regression model under normal and non-normal error 

situations were studied. Results from the study shows that the Theils method demonstrates the strongest performance gains as 

compared to OLSE in terms of model evaluation error. The lower the value of mean square error, the better the fit of the model 
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with the estimator.  This study revealed that Bayesian linear regression is a more optimal and safer alternative when compared 

with OLSE and provides inferences that are conditional on the data and are exact without reliance on asymptotic approximation. 

Theil estimator has high small sample efficiency across board, but especially when the variance of the error terms is not 

constant. More so, Theils estimation is the most efficient and reliable which can be applied in numerous situations. Also, the 

empirical results affirm the robustness characteristic of the Bayesian estimator to contamination in the dataset as it remains 

robust with violations of linear regressions assumptions. 

Least Trimmed Squares is most especially applicable when the error term is confirmed to come from a heavy tailed distribution 

and the sample size is large. OLSE is only consistence if it is best linear and unbiased. 

The current study has also confirmed the applicability of the Theils method to varying circumstances and its robustness over 

many other robust methods, especially the LTS and Bayesian methods.  
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