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Abstract

This article is about defining and studying an improved technique of parameter induction to a
continuous probability distribution through a new G-class of probability models. In particular,
the Weibull distribution is used in the defined technique and it is named as KP-W distribution.
The importance of this generalization of Weibull distribution comes from its ability to model
various kinds of hazard functions such as ascending, descending, first decreasing and then
increasing, or constant hazard rate functions. Different properties of this generalized modified
model have been deliberated along with raw moments and functions which can generate
moments, quantiles, hazard function, Rényi entropy, stress-strength parameter, order statistics,
the average time to wait until served and average remaining life. Maximum likelihood (ML)
estimation of the proposed G class and its sub-model, the KP-W is also presented. Finally, the
KP-W model is judged for its goodness to fit using data sets from different fields to showcase
its practical applications.

Keywords

G-class of probability distributions, Weibull distribution, hazard function, entropy measures and
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1. Introduction

In reliability theory, the Weibull distribution is a well-known and widely used probability model. It
has been commonly used in analyzing lifetime datasets but it does not provide a better fit on lifetime
datasets in certain situations. To overcome these types of weaknesses, many authors have developed
different extensions to the Weibull distribution. Recently, [1] used the « -power transformation on

26



http://www.uow.edu.pk/

UW Journal of Science and Technology Vol. 7. Issue 1, (2023) 26-50
ISSN: 2523-0123 (Print) 2616-4396 (Online)

the well-known Weibull distribution and obtained the alpha-power Weibull distribution. They

applied their model to real-life datasets to show how it works in practice.

Several such modifications are available in the literature which can be used to have a new

distribution function (DF) using a baseline DF. Some of the important transformations include

(i)

(i)

(iii)

(iv)

v)
(vi)

(vii)

(viii)

(ix)

)

Exponentiated-G class of distributions, defined as G (y;z)=[F(y;z)]",« >0and
presented by [2].

QRTMisdefinedas G, (y;z)=(1+2)F (y;7)+A[F(y;z)] ,|4| <1 presented by [3]

Flyie)
e

-1
and this transformation was
e-1

DUS transformation is defined as G (y;7) =
proposed by [4].
- - - - ”
A transformation by[5] is defined as G (y;z) =sin{—F (y;7)].
2

A transformation by [6] is defined as G_(y;z) = e "0

log [2-F (y;7)] .
log, [2]

A transformation by [7] is defined as G_(y;z)=1-

a[F(yie)] -1

GDUS transformation proposed by [8] with DF given by G, (y;1)=————,a>0
e-1

A transformation using a trigonometric function, suggested by [9] and defined as

GB(y;r)=Sin|:§F(y;r)(F(y;f)+l)]Vxe R.

2[F(y:7)]

A transformation initiated by [10] defined as G, (y;7) = —————

[14F (yie)]
The Marshal and Olkin  Transformation by [11] has the DF

a(l-F(yir))
1-(1-a)(1-F (y;7))

Gm(y;r):l_
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(xi) Another transformation using the trigonometric  function defined as

G, (yiz)=Tan (% F(y: r)) and proposed by [12].

(xii) A generalized family of distributions by [13] having DF as

t)}
Gu(y;r)zi 1—e{

e-1
Similarly, some of the recent modifications or transformations may be found in [14], [15],[16], [17]
and [18] , among others. The key contribution of the current paper is based on discussing a
generalization of a class of models with DF G, (y; 7). This generalization of G, (y;7) is named

as KP-Generalized (KP-G) class of distributions. We now present the KP-G class in the next section.

2. KP-G class of distributions
Letting F (y;z)as the DF of a random quantity Y with parameters 7, DF of the random

variable Y following KP-G class of models defined as

kF (y;7)

G.(y;r,k)=——"""——.
13(y T ) k—1+F(y,z')

M

The above defined G_ (y;7,k)is a complete DF for k > 1. For k =2, it becomes G, (y;7).

Also, the corresponding probability distribution function (PDF) can be derived as

_ k(k-D)f(y;7)

g, (vt k)= - @)
{k -1+F (y;r)}
2.1 Linear representation of DF and PDF
From (2), the g, (Y; T, k) may be rewritten as
W) Flyo))
gﬁ(y;r,k):k(k—l)f(y;r,k){k—1+F(y;r)} = {1+ (3)
k-1 k-1
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Using the binomial expansion @1+vy)” = Z(mz)y = ;(m +1)(-y)" with |y| <1, in (3), we
get
0. (yiek) = XD (m+1)F(:/ir)m f(yir) -y k(1) h<mﬂify:r) |
- (k-1) o (k-1)
6 (ymK) = S w i, (7). @
k(-1)"

m

In (4), we have w :( and h, . (y;z)=(m+1)F(y;7)" f (y;7)isthe PDF of the
k
exponentiated class of distributions based on F (y; r)with exponentiation parameter (m+1).

Now , using (4), the CDF G, (Y; 7,k ) may be written as

G, (yir.k) =Iy 9, (i k)dx :J.Z(_l) (DK (yir) | (y;r)dy

(k-1)""
5 0 L, G
B o (k 71)m+1
6. () oy Y Hen 050 oy "
=0 (k —1) o

where H_(y;7)=F(y; r)(m”) is the DF of exponentiated class of distributions.

2.2 r'" moment and moment generating function(mgf)
By definition,
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u = J y'o, (y;r, k)dy = IZ ermh(m+1) (y;r)dy

—oo M=0
/ur' = Zwmj y'h(m—l) (y,f)dy = zwmﬂr"(mﬂ)
m=0 . m=0

In the above expression ﬂr'y(mﬂ) symbolizes the r'" raw moment of an exponentiated form of the

baseline class of models.

Similarly, mgf of KP-G class of models is given by

M, (t) = [e"g,, (viz.k)dy = [ Doe"w iy, (it )y

— M=0

M, (1) = 2w, [e'n,, (virdy = XwM, ., (1),

where M (t)is mgf associated with an exponentiated form of family of the baseline

distributions.

2.3 Survival, hazard and quantile functions

Survival, hazard and quantile functions of the KP-G family of models are respectively given
by

KE(yiz)  (k-1)F(yir)

S(y;r,k):lwa(y?Txk):l*k_1+F(y;T)_k—(l—F(YJr))’ ©

o Llink) kf (yi7) __k(yir) 7
h(yir.k) s(yir.k)  F(yir)(k-1+F(y;r)) (k—-s'(yiz)) "
qu(y):[:1(ul((k__ul)), (8)

where r'(y;r) and S'(y;r)are the reverse hazard rate function and survival function of the

baseline model f (y;7)and ull Uniform(0,1).
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3. KP- Weibull (KP-W) distribution: a special case

By substituting PDF and DF of the Weibull model as F (y;r)and f (y;r), respectively, in

the above expressions in equations (2) and (1), we can obtain the DF and PDF of KP-W
distribution. An important feature of this model is that the newly inducted parameter k can
produce certain attractive properties and can fit certain lifetime data-sets better than the
previously available generalizations of the Weibull distribution.

As we know that the PDF and DF of the Weibull probability model having 1 and g as
parameters, are expressed as:

f(y;4,8)=28y""e", 9)

F(yidB)=1-¢"", (10)

Using (1), (2), (9) and (10), DF and PDF of the KP-W model with three parameters k, 1 and

are given below.

K(1-e")

G(y;/l,ﬂ,k)=—“,,kZland,l,,Handx>0 (11)
k-e”

Also the PDF against DF in (11) can be derived as given below

2

g(y; 4, B8, k)=k (,By"’lle’”ﬂ )(k —1)(k —e ) . (12)

We can write , and by using binomial series expansion, we can write,

-2 - 7 1 = ei}by, - -
k'||1-— | |=—=2_(m+1)| — | . Consequently, PDF of KP-W model is given as
k k

m=0
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a(y;2.4.k) =(k-1)(28y’ )Z(Hl)[ " j (13)
- o — k=11,p=21i= < 4 — k=11,p=2,1=2
— k=15, B=15, 1=1 — k=15, B=15, A=1
— k=8 B=26, 1=02 — k=8, B=26, 1=02
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Fig 1: Graphs of different shapes of the PDF and DF of the KP-W distribution for different

parametric values.

In figure 1 shapes of PDF and DF of KP-W model at different combinations of parametric
values are shown. From these shapes we see that the distribution is highly and positively
skewed for smaller values of k. If we take large values of parameter k, this degree of skewness
decreases.

Given below are the certain cases which the KP-W distribution can generalize.

1. If A =1then g(y) defined in (13) reduces to KP- one parameter Weibull distribution.
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2. If =1 then the above g(x) defined in (13) reduces to KP exponential model.

3. If g =2, the above g(y) defined in (13) reduces to KP Rayleigh distribution.
3.1 Structural Properties of KP-W Model
Now, we study different characteristics like, hazard function, moments, mean residual life,
stress-strength parameter, survival function moment generating function (MGF), Rényi
entropy, quantile function and ordered random variables of the KP-W model.
3.1.1  Survival Function

Survival ~ function, S(y;2,8,k), of the KP-W model is expressed as:

k-1)e ™
S(y;/l,ﬁ,k)=1—G(y;i,ﬂ,k)=(kl—i,,- (14)
—€e

3.1.2 Hazard Function
The hazard or failure rate function of the KP-W distribution is derived as follows.

h(y;/iyﬂ’k):w
s(y; 4 B.k)
kigy”"
(ko2 p) = o (15)
-e

The Figure 2 showcases the pictorial representation of hazard function of KP-W model. These
graphs show that it can be used to handle multiple hazard types.
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Fig. 2: Shapes of hazard rates of KG-W distribution against different combinations of
parametric values.

3.1.3 Quantile Function
By equating G(y; A4, B, k) =u, where ul Uniform(0,1). On simplifying this expression, the

quantile function of KP-W model ca be shown as presented below.

ey

The g™ quantile of KP-W model is expressed as:
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Y, - {_% n {%—q@l)”ﬂ

Putting g = 0.5, median of the KP-W model is given by:

=| ——In :
L2 k-1

3.14 Moments

The r'" raw moment of the KP-W probability model is expressed as:

E(Y')=Tyrg(x;k,/1,ﬂ)dy

:ﬂ,ﬂ(k—l)J‘yry’“i(erl)(ey ] dy

k

= | =

Let Ay” = zthen 2By’ ‘dy=dzand y' =( ) . S0 we have

>N

E(y)=(k _1)I(§j;§(m+1)(ekz jmﬂ dz

_(k-1) i(m”)f(z)i*“ (e) " dz

L K"

/1/"

k—l - 1 % Llfl —z(m+1
LS O o) e

ﬁ; m=0 k )
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(kD (men) ( ”)

r — k m+1 Lﬂ
A% ( m+ l)ﬂ

(k- 1)2 (“rj : (19)

15 m=0 |t (m +l)/f

To get mean, put r =1 in (19) and have

E(Y)= (k- 1)2 (“1) : (20)

PV k™ (m +1)E

Put r =2 in (19) to get second raw moment as:

E(v?)= (k- 1)2 (sz _ 21)

2 K (med)s

Then, the variance of the KP-W distribution is obtained as:

var(r)- D f(“éJ Jtens ( 1) 2_ -

l; m=0 kmﬁ(m +1)ﬂ l; m=0 'M(m +1)ﬂ

3.15 MGF of KP-W model

For a random variable Y having KP-W model with PDF g(y;%,4,5), the MGF is derived

As below.

M, (t)=E(e") Ie‘yg(yklﬁ)dy
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t
By Maclaurin’s series expans1on we can write e Z ( y)
r=0 r'

Using the above expansion and PDF of the KG-W distribution we have,

]mﬂ

Using substitution A1y” = z and after further simplification, we can get the following

M, (t)=E(e")= jz(y) (k- l)ﬂﬂy”lz(m+1)[

o r=0

expression,

0 r

M, (1) = ZZ(m+1)(k l)t'J s o g,

r=0 m=0 kmﬂﬂ,ﬁ -0
)

M. (1) = ZZ(m+1)(|< 1)t _ 23)
r=0 m=0 K™ a7 (m+1) B

3.1.6 MRLand MWT
For a random variable Y having S(y;r)as its survival function, the MRL function is

represented as estimated residual lifetime after a specific time point s, that is,

p(s)=E(X-s|X >s)

u(s)= T )(E( 5)- fyg(y r)dyj—s (24)

where

s m+1
e”
dy
k )

1
| —+L(m+1)as” |, (25)
1 (ﬂ+ (m+1) j

1
S k™ (mera)s

iyg (y;7)dy :jyi(k —1)ﬁy”’1i(m +1)[

(k-1 1

37



UW Journal of Science and Technology Vol. 7. Issue 1, (2023) 26-50
ISSN: 2523-0123 (Print) 2616-4396 (Online)

and T'(a;y) = Je’yy“’ldy is an incomplete gamma function.

By substituting equations (14),(20) and (25) in (24), we can write p(t) as:

- e (k1) z r(1+;j _ir(u;;(mu)zsﬁj

e (k=1) |k (med)s K™ (med)s

u(s) = k_edj Z ! 1 [r(inj—r(i+1;(m+1)/15ﬁﬂ—s. (26)

ey KT (me)s b NP F

U

-S

The MWT tells about the time taken by an object before its failure, under the assumption
that the failure has occurred within the time interval starting from 0 to s. The expression for
MWT is calculated as:

1

G(S)ng(x;i,ﬂ,k)dx. 27)

Substituting equations (11) and (25) in (27) we have,

! s
/7(5): S—(kie xs )(kl)ir(l_‘_ﬁl’(m_‘_l)AS ) |

(1_6,4; )M; k™ (m+1),

H(s)=s-

(28)
3.1.7  Stress-Strength(S-S) Parameter
Let Y,and Y, are two independent continuous random variables, where Y, [ KP-W(kl,/Il,,B) and

Y U KP-W(k,, 4, /). The S-S constant, say R, is given by:

R=Igl(yv”tl,ﬁ,kl)Gz(y;/lz,ﬂ,kz)dy, (29)

By substituting (11) and (12) in (29), we have,

o (ke )2 k,—e™
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(k -1) 4, s sy iy _e’”‘yﬁ ’ _e”“zyﬂ ;
R= jp’” (1 e )(1 |< ](1 - de. (30)

1 1 2

Using binomial series, we get,

-1y’

1 -2 . —llyﬁ i
1-¢ =Y (1+1) ¢
i=0 kl

]I
So, R is written as:

( l)ﬂ Z (1+ |) |:J‘ﬂ Figx P (3 (14i)+ 4, |)dy J'ﬂy/; 1% (;](1+|)+zz(1+|))dy:|

1 i=0 1=0

a
-2,y w -4,y
e e
ey
1=0 )

k

0

By making substitution y# = z, R reduces to,

(k 1)/1 Zz(uu)[ L 1 } o

o 1o A@+i)+al A (L+i)+ A (1+1)

3.1.8  Rényi Entropy
By entropy we can measure the difference in uncertainty of a random variable Y. The
expression for Rényi Entropy is:

Rw(y;/l,ﬁ,k)=$I09U{g(y;ﬂ,ﬁ,k)}”dy] $>0,0#1.

—0

Using here, the PDF of the KG-W distribution, discussed earlier, we have,

1 <l (k-1)kpy e
Rw(y;ﬂ,ﬁ.k)=1—log f (k-1 dy

o[ (ke

Rw(y;l,ﬁ,k)zilogk(k—l)
1-9
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+——1log| [(28) y" e k7| 1= dy
l1-¢ . k

Now, applying the binomial series expansion formula, we can write,

SR o

Now, substituting 1y” (i +(p) =17 and after simplification the expression for Rényi

Entropy becomes,

R(,(y;i,ﬂ,k)=ilogk(k71)
1-9

l-9¢

L o4 Z(zwﬂ—lj’“—ﬂm]r((p_i((p_l)) , (32)
i kzw” (I + (p)w*;(md) ﬂ

3.1.9 Ordered random variables

Assuming Y, Y,-Y, asarandomly drawn n sample values from the KP-W probability model,

and Yj:n represents the j™ ordered statistic, the PDF of Yj:n is defined below.

TV AE g(vir s )[1-6(viz 2] [6(y:2, K]  (33)

(n-inCj-

Substituting (11) and (12) in (33) we get
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n k(k-1) 28y" e " k(l—e’””) k(l—ew' )
o (yi2 k)= 1- , — | . (34)
(h-iCi-n (k—e’/y ) k-e’ k-e”
3.1.10 Estimation of Parameters
By using the different estimation approaches, we find estimates of the three constants k, A

and £ of KP-W probability distribution.

Q) Maximum Likelihood Estimation

Suppose that a random sample Y.Y...Y of size n from KP-W distribution is randomly drawn,

then the log-likelihood function is given by

|=n|n{k(k—1)w}—/12yf+2|n ; +(ﬁ—1)2|n y .

Ay,

k—e™
To get the MLEs of k, A and g, we differentiate the above expression with respect to 1 S

and k and equate to zero. This gives the following system of equations

al " 1 n(2k 1)
—=-2> 1 35
o Zn (k-e) e >
a n ey’ S
= N In ——i | s _0, 36
Pyt len (k—e*”'”) ley (36)
n e’ y Iny
_——+2Iny ﬂ,zy Iny sz W =0. (37)

We can find the numerical solutions of MLEs of parameters k, A and /£ with the help of any
software like R, Matlab, or Mathematica.

(i) Least Squares Estimators

and ﬁ of the unknown parameters k , 2and g of

,\
LSE 7 LSE

The least squares estimators k .

the KP-W distribution can be obtained by minimizing the following function
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Ls(k,m)=Z[G(Vik*”)‘i}z

n k l—eily'ﬂ ) |

2

LS(k,ﬂ,ﬂ):Z ( —

k—e ™ n+

1

(38)

(39)

with respect to k, Aand [ . That is least squares estimators can be obtained by solving the

following system of differential equations given in (40)-(42).

aLs (k, 4, ,B) 0

2> A

a i=1

k—e ™
as (k4 p) 3

_ ZZA k(l—e’”" ) .

(1— e )

0A k—e ™

k (1— e )

as(k 4 p) 3

n+1

=2 A
op ) e

where A = :
| (k e ﬁ)z | (k e

(iii) Weighted Least Squares Estimation

The weighted least squares estimators I{NLSE; /iWLSE

n+1

e

g

e e Az:k(k—l)yﬁ v

and A

:o,

(40)
(41)

(42)

, k(k-1)apy"e”

and g _ of the unknown

WLSE

parameters k, Aand g of the KP-W distribution can be obtained by minimizing the

following function with respectto k, Land 3.

WLS (k, 2, 8) = z(n;nl);++)2)

i=1

(n+1)"(n+2)

6 (y [k 18)-—— }
n+1

(43)

WLS (k, 4, B) = Z

i=1

i(n+1-i)

(44)

That is, the weighted least squares estimators can be obtained by solving the following system

of differential equations given in (45)-(47).
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n : k(1-e” i
owes (k, 4, 8) =_2Z(n+l) (n+2) K ( ¢ ‘ )_; -0 (45)
o oi(n+1-i) | k_e™ n+1
. 2 k(1-e -
aLs (k, 4, 8) :2 (n+1) (n+2) N ( ‘ )_ ' o, (46)
a1 = i(n+1-i) k—e™ n+l
. 2 [k(1-e™ i
aLs (k, 2, 8) :2 (n+1) (n+2) N ‘ )_ S (47)
op w i(n+1-i) k—e™ n+l

where A',(t=1,2,3) are same as given above.

(iv) Cramer-Von-Mises Estimators

A

; Aeue @nd A Of the unknown parameters

cwve ' T TCVME

The Cramer-Von-Mises estimators k

k, Aand g of the KP-W distribution can be obtained by minimizing the following function
with respectto k, 1and g.

CVMS(k,/l,ﬂ):iJan: G(ka,ﬂ,ﬂ)—E} (48)
12n . 2n

(49)

1 n
CWMS (k, 2, ) = —+ Y
12n 2

That is, the Cramer-Von-Mises estimators can be obtained by solving the following system of
differential equations given in (50)-(52).

TR BN i G N (50
ok e 2n ’

aCVMS(k,/l,ﬂ)_ZZ":AZ k(l‘ew‘”) A-10 (51)
oA a | k—e™ 2n ,

aCVMS(k,i,ﬂ)_ZZ”:N k(l‘ew‘”) a-1) (52)
B o k—e®2n |

where A',(t=1,2,3) are same as given above.
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4. Simulations Study
To analyze the precision of the estimates of parameters of KP-W distribution, a simulations
study is conducted. The parameters are estimated by using ML estimation. We generated 1000
sample of sizes n = 20, 50 and 100 from the KP-W distribution. To generate the samples of
different sizes from KP-W distribution, we have used the Quantile function of this model
defined above. From each sample, we computed the estimates by using the method of ML
estimation. The simulated averages and MSEs over 1000 repetitions are given in the following
Table 1. From the Table 4.1, it is clear that the simulated values are close enough to the true
values of parameters and if we increase the size of sample, the mean squared errors of these
estimates decrease.
Table 4.1: Simulated averages and mean squared errors (MSE) of MLEs for the parameters g, A4
and k of the KP-W distribution.

n =20
Parmaeters Average MLEs MSEs
B yl k B A k B ) k

0.5 0.1 1.1 0.548 | 0.198 | 1.37 2.292 | 0.342 | 0.158
2.0 0.558 | 0.209 | 2.786 | 1.762 | 0.269 | 5.872
1.0 1.0 1.1 1.79 1.98 1.65 0.950 | 0.399 | 0.491
2.0 1.85 1985 | 2.86 3.048 | 0.586 | 0.146
n=>50
0.5 0.1 1.1 0.527 | 0.179 | 1.26 1.056 | 0.165 | 0.104
2.0 0.546 | 0.186 | 2.479 | 0.792 | 0.119 | 0.786
0.5 0.1 1.1 1.48 1.75 1.52 0.554 | 0.236 | 0.254
2.0 1.67 1.82 2.47 1.672 | 0.337 | 0.104
n =100
0.5 0.1 1.1 0512 | 0.114 | 1.17 0.612 | 0.095 | 0.064
2.0 0.521 | 0.134 | 2.124 | 0.456 | 0.068 | 0.387
0.5 0.1 1.1 1.16 1.35 1.29 0.342 | 0.141 | 0.175
2.0 1.18 1.43 2.34 0.871 | 0.187 | 0.069

5. Applications
In this portion, we discuss the applications of KP-W distribution on those data-sets that belong
to real life to prove the signification and flexibility of this model.
Q) First real-life application
The first data-set corresponds the monthly taxes revenue in Egypt (measured in 1000 million
Egyptian pounds) for the period January 2006 to November 2010. This data-set is taken from
[19]. This data-set consists of following observations,
5.9,204, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1, 6.7, 17, 8.6,9.7,
39.2,35.7,15.7,9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1,
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20.5,7.1,7.7,18.1, 165,119, 7, 8.6, 125, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9,
7.1,10.8

We analyzed this data by the proposed technique, the KP-W distribution, and compared with
different existing models mentioned in the Table 5.1 below.

Table 5.1: AICs and BICs computed after fitting different distributions on Data set of Tax

Revenues.

Model AIC BIC
Lgistic Eponential 389.35 393.51
Weibull 398.58 402.73
Exponential 427.01 429.09
Marshal Olikin Logistic Eponential 387.34 393.58
KP-W 386.79 393.02
Lomax 429.0136 43.17
Exponential Lomax 400.5883 406.82
Histogram and theoretical densities Empirical and theoretical CDFs
5 _ B . O =
S - exp §F - _
MOLE @ - -
lomax e
Q KPW
=} EXPL o |
iz 8 /
° —— logexp
o - = weibul
=] o s oexp
° s 7 MOLE
. T kew
= e o | EXPL
< T T T T T T T 1 ° T T T T T T T T
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
data data
Fig 3: Density Plots and CDF plots of different fitted distributions for Tax revenue data-set.
P=P plot Q-Q plot
= #] 8
% ; ] =8— |ogexp E w logexp
w =&= weibul - weibul
& = exp exp
o 7 MOLE 2 MOLE
=8 |omax lomax
KPW KPW
e 4 EXPL w1 & EXPL
0.0 0.2 0.4 0.6 0.8 1.0 60
Theoretical probabilities Theoretical quantiles
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Fig 4: PP and QQ plots for Tax revenue dataset and fitted distributions.

(ii) Second real-life application

The values Model AIC BIC
Logitic Exponential 1131.04 1136.21

t dat t

set data set |y ciui 924.24 929.40

Brake-Pads | Expoential 1021.56 1024.15

times for 98 | Marshal _Ollk Logistic 921.46 92921

its  per Exponential

(units —per Mo w 921.20 928.96

kilometers) | Kumaraswamy Lomax 923.223 933.5630

from [20] | Lomax 1023.5669 1028.7368
Expoentiated Lomax 926.2954 934.0503

data-set Weibull Lomax 923.4776 933.8175

consists of | Expoentiated Weibull 921.2813 929.0362

following values:
38.7, 69.6, 86.7, 79.5, 49.2, 74.8, 43.8, 55.0,42.4, 32.9, 100.6, 46.8, 73.8, 51.5, 67.6, 124.5,
46.7, 31.8, 89.5, 92.5, 44.1, 77.6, 60.3, 110.0, 61.9, 63.7, 103.6, 101.2,39.3, 83.0, 82.6, 59.4,
49.8,24.8,88.0, 27.8, 46.3, 68.8, 42.4, 33.6, 56.2, 68.8, 68.9, 69.0, 50.5, 89.1, 95.7, 75.2, 54.9,
65.0, 78.1, 58.4, 54.0, 65.1, 83.6, 105.6, 49.2, 59.3, 18.6, 56.2,44.8, 53.9, 92.6, 55.9, 15.8,
30.9,57.3,83.8,107.8,47.4, 34.3, 123.5,81.6, 61.4, 105.6, 69.0,45.2, 72.8, 20.8, 101.9, 124.6,
54.0, 52.0, 87.6, 64.0, 37.2, 77.2, 38.8, 83.0, 44.2, 68.9, 74.7, 143.6, 50.8, 78.7,43.4, 65.5,

165.5

in this
are
Life
Cars
1000
taken
The

The KP-W model is fitted to the above data and its performance is compared with that of the

different competitor models mentioned in the Table 5.2 below.

Table 5.2: AlICs and BICs computed after fitting different distributions on Data set of Brake

pads Lifetimes.

46



Density

Empirical probabilities

UW Journal of Science and Technology Vol. 7. Issue 1, (2023) 26-50
ISSN: 2523-0123 (Print) 2616-4396 (Online)
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Fig. 5: Density and CDF plots for Brake pads lifetimes dataset and distributions.
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Fig. 6: PP and QQ plots for Brake pads lifetime dataset and fitted distributions.

47



UW Journal of Science and Technology Vol. 7. Issue 1, (2023) 26-50
ISSN: 2523-0123 (Print) 2616-4396 (Online)

6. Conclusive remarks

A new G class of probability distributions, named as KP-class of distributions, is presented.
The suggested KP-class of distributions is based on the induction of an additional parameter
resulting in more tractable distribution for analyzing the lifetime data. Further, we have derived
expressions for moments, Rényi Entropy, ordered statistics, MRL and stress-strength
parameter for the KP-W distribution, a sub-model of the proposed family. The method of ML
estimation is used to estimate the parameters. The fitting of this KP- W distribution on two
data-sets from real world also illustrated that the suggested distribution provides satisfactory
goodness of fit measures in comparison to competitive probability distributions. From the
tables 2 and 3, representing AICs and BICs of different models fitted on two different data
sets, we can see that the AICs and BICs obtained after fitting the KP-W distribution are
minimum and also we can see from the density, Q-Q, CDF and P-P plots that the KP-W
probability distribution turns out to be a better choice for modeling the two real life data in
comparison to the other existing probability distributions.
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