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 Abstract 

This article is about defining and studying an improved technique of parameter induction to a 

continuous probability distribution through a new G-class of probability models. In particular, 

the Weibull distribution is used in the defined technique and it is named as KP-W distribution. 

The importance of this generalization of Weibull distribution comes from its ability to model 

various kinds of hazard functions such as ascending, descending, first decreasing and then 

increasing, or constant hazard rate functions. Different properties of this generalized modified 

model have been deliberated along with raw moments and functions which can generate 

moments, quantiles, hazard function, Rényi entropy, stress-strength parameter, order statistics, 

the average time to wait until served and average remaining life.  Maximum likelihood (ML) 

estimation of the proposed G class and its sub-model, the KP-W is also presented. Finally, the 

KP-W model is judged for its goodness to fit using data sets from different fields to showcase 

its practical applications. 
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1. Introduction 

In reliability theory, the Weibull distribution is a well-known and widely used probability model. It 

has been commonly used in analyzing lifetime datasets but it does not provide a better fit on lifetime 

datasets in certain situations. To overcome these types of weaknesses, many authors have developed 

different extensions to the Weibull distribution. Recently, [1] used the  -power transformation on 
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the well-known Weibull distribution and obtained the alpha-power Weibull distribution. They 

applied their model to real-life datasets to show how it works in practice.  

Several such modifications are available in the literature which can be used to have a new 

distribution function (DF) using a baseline DF. Some of the important transformations include  

(i) Exponentiated-G class of distributions, defined as     
1

; ; , 0G y F y


    and 

presented by [2].  

(ii) QRTM is defined as         
2

2
; 1 ; ; , 1G y F y F y          presented by [3]  

(iii)  DUS transformation is defined as   

 ;

3

1
;

1

F y

e
G y

e









 and this transformation was 

proposed by [4].  

(iv) A transformation by[5] is defined as     4
; Sin ;

2

G y F y


  .  

(v) A transformation by [6] is defined as    

1
1

;

5
;

F y

G y e





 .  

(vi) A transformation by [7] is defined as  
  

 
6

log 2 ;
; 1

log 2

e

e

F y
G y





  .  

(vii) GDUS transformation proposed by [8] with DF given by  
  ;

7

1
; , 0

1

F y

e
G y

e

 

 


 


. 

(viii) A transformation using a trigonometric function, suggested by [9] and defined as 

      
8

; Sin ; ; 1 ,

4

G y F y F y x R


     
 
  

.  

(ix) A transformation initiated by [10] defined as  
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2 ;
;

1 ;

F y
G y
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. 

(x) The Marshal and Olkin Transformation by [11] has the DF 
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(xi) Another transformation using the trigonometric function defined as

    11
; Tan ;

4
G y F y


   and proposed by [12].  

(xii) A generalized family of distributions by [13] having DF as 

 

 

 
 ;

;
1

12
; 1

1

G y

G y
e

e
G y e

e












 

 
 
 
  

 


 
 
 
 
 

. 

Similarly, some of the recent modifications or transformations may be found in [14], [15],[16], [17] 

and [18] , among others. The key contribution of the current paper is based on discussing a 

generalization of a class of models with  DF  
9

;G y  . This generalization of  
9

;G y  is named 

as KP-Generalized (KP-G) class of distributions. We now present the KP-G class in the next section. 

 

2. KP-G class of distributions 

Letting  ;F y  as the DF of a random quantity Y with parameters  , DF of the random 

variable Y following KP-G class of models defined as 

 
 

 
13

;
; ,

1 ;

kF y
G y k

k F y







 
.       (1) 

The above defined  
13

; ,G y k is a complete DF for k > 1. For 2k  , it becomes  
9

;G y  . 

Also, the corresponding probability distribution function (PDF) can be derived as 

 
   

  
13 2

1 ;
; ,

1 ;

k k f y
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.        (2) 

2.1 Linear representation of DF and PDF 

From (2), the  
11

; ,g y k may be rewritten as 

        
    

2

2
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 (3) 
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Using the binomial expansion   2
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  with 1y  , in (3), we 

get 

 
       

 

 
 

 

 

1

13 1 1

0 0

1 ;1 1 ; ;
; ,

1 1

mm m

m

m m

m m

k h yk m F y f y
g y k

k k

 


 



 

 

 
 

 
  , 

     
13 1

0

; , ;
m m

m

g y k w h y 






 .       (4) 

In (4), we have 
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 and 

         
1

; 1 ; ;
m

m
h y m F y f y  


  is the PDF  of the 

exponentiated class of distributions based on  ;F y  with exponentiation parameter  1m  . 

Now , using (4), the CDF  
13

; ,G y k may be written as  
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where 
     

 1

1
; ;

m

m
H y F y 




 is the DF of exponentiated class of distributions. 

 

2.2  rth moment and moment generating function(mgf) 

By definition,  
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In the above expression  , 1r m



  symbolizes the rth raw moment of an exponentiated form of the 

baseline class of models. 

Similarly, mgf of  KP-G class of models is given by 
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   , 

where  
 

, 1Y m
M t


is mgf associated with an exponentiated form of family of the baseline 

distributions. 

2.3  Survival, hazard and quantile functions 

Survival, hazard and quantile functions of the KP-G family of models are respectively given 

by 
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,  (7) 
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,        (8) 

where  ;r y  and  ;S y  are the reverse hazard rate function and survival function of the 

baseline model  ;f y  and  0,1u Uniform . 
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3. KP- Weibull (KP-W) distribution: a special case 

By substituting  PDF  and DF of the Weibull model as  ;F y  and  ;f y  , respectively, in 

the above expressions in  equations (2) and (1), we can obtain the DF and PDF  of KP-W 

distribution. An important feature of this model is that the newly inducted parameter k can 

produce certain attractive properties and can fit certain lifetime data-sets better than the 

previously available generalizations of the Weibull distribution. 

As we know that the PDF and DF of the Weibull probability model having λ and β as 

parameters, are expressed as: 

  1
; ,

y
f y y e


 

  
 

 ,       (9) 

  ; , 1
y

F y e



 


  ,                    (10) 

Using (1), (2), (9) and (10), DF and PDF of the KP-W model with three parameters k, λ and β 

are given below. 

 
 1

; , ,

y

y

k e

G y k

k e









 










, 1k  and , ,  and 0x                           (11) 

Also the PDF against DF in (11) can be derived as given below 
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1
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g y k k y e k k e

 
  

   


  
   .               (12) 

We can write  , and by using binomial series expansion, we can write, 
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 . Consequently, PDF of  KP-W model is given as  
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Fig 1: Graphs of different shapes of the PDF  and DF of the KP-W distribution for different 

parametric values. 

In figure 1 shapes of PDF and DF of KP-W model at different combinations of parametric 

values are shown. From these shapes we see that the distribution is highly and positively 

skewed for smaller values of k. If we take large values of parameter k, this degree of skewness 

decreases. 

Given below are the certain cases which the KP-W distribution can generalize. 

1. If λ = 1 then g(y) defined in (13) reduces to KP- one parameter Weibull distribution. 
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2. If β = 1 then the above g(x) defined in (13) reduces to KP exponential model. 

3. If β = 2, the above g(y) defined in (13) reduces to KP Rayleigh distribution. 

3.1 Structural Properties of KP-W Model  

Now, we study different characteristics like, hazard function, moments, mean residual life, 

stress-strength parameter, survival function moment generating function (MGF), Rényi 

entropy, quantile function and ordered random variables of the KP-W model. 

3.1.1 Survival Function 

Survival function,  ; , ,S y k  , of the KP-W model is expressed as:  

   
 1

; , , 1 ; , ,

y

y

k e
S y k G y k

k e









   






  



.               (14) 

3.1.2 Hazard Function 

The hazard or failure rate function of the KP-W distribution is derived as follows. 
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.                    (15) 

The Figure 2 showcases the pictorial representation of hazard function of KP-W model. These 

graphs show that it can be used to handle multiple hazard types.  
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Fig. 2: Shapes of hazard rates of KG-W distribution against different combinations of 

parametric values. 

3.1.3 Quantile Function 

By equating  ; , ,G y k u   , where  (0,1)u Uniform .  On simplifying this expression, the 

quantile function of KP-W model ca be shown as presented below. 

  
1

1 1
ln

k u
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k u






 



 
  

.                   (16) 

The qth quantile of KP-W model is expressed as: 
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Putting q = 0.5, median of the KP-W model is given by: 
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.                  (18) 

3.1.4 Moments 

The rth raw moment of the KP-W probability model is expressed as: 
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To get mean, put r = 1 in (19) and have    

 
 

 
1 1

10

1
1

1

1
mm

k
E Y

k m 









 






 
 
 

 .                           (20) 

Put r = 2 in (19) to get second raw moment as: 
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 .                 (21) 

Then, the variance of the KP-W distribution is obtained as:       
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3.1.5 MGF of KP-W model  

For a random variable Y having KP-W model with PDF g(y;k,λ,β), the MGF is derived 

As below. 
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By Maclaurin’s series expansion we can write 
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 . 

Using the above expansion and PDF of the KG-W distribution we have, 
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Using substitution y z
   and after further simplification, we can get the following 

expression, 
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3.1.6 MRL and MWT 

For a random variable Y having  ;S y  as its survival function, the MRL function is 

represented as estimated residual lifetime after a specific time point s, that is, 

   s E X s X s     
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and   1

0

;

y

y
y e y dy




 
    is an incomplete gamma function. 

By substituting equations (14),(20) and (25) in (24), we can write µ(t) as: 

 
 

 

 

 

 
1 1 1

1 10 0

1 1
1 1 ; 1

1

1 1 1

s

s
m mm m

m s
kk e

s s
e k k m k m











  


 





  


  

    


  
  

    
       

 
 
 
 

   

 

 

 
1 1

10

1 1 1
1 1; 1

1

s

mm
s

k e
s m s s

k me









  

 
 










       



    
        

 .           (26) 

The MWT tells about the time taken by an object before its failure, under the assumption 

that the failure has occurred within the time interval starting from 0 to s. The expression for 

MWT is calculated as: 
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Substituting equations (11) and (25) in (27) we have, 
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3.1.7 Stress-Strength(S-S) Parameter  

Let   1Y and 
2Y  are two independent continuous random variables, where  

1 1 1
KP-W , ,Y k   and  

 
2 2 2

KP-W , ,Y k   . The S-S constant, say R, is given by: 
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By substituting (11) and (12) in (29), we have, 
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Using binomial series, we get, 
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So, R is written as: 
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By making substitution y z  , R reduces to, 
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3.1.8 Rényi Entropy 

By entropy we can measure the difference in uncertainty of a random variable Y. The 

expression for Rényi Entropy is: 
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Using here, the PDF of the KG-W distribution, discussed earlier, we have, 
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Now, applying the binomial series expansion formula, we can write, 

1

0

2 1
1

2 1

i
y y

i

ie e

k k

 

 




 





 
 



    
    

    
  

.Now, substituting  y i z


    and after simplification the expression for Rényi 
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3.1.9 Ordered random variables 

Assuming 
1 2
, , ...

n
y y y  as a randomly drawn n sample values from the KP-W probability model, 

and :j n
Y  represents the th

j ordered statistic,  the PDF  of :j n
Y  is defined below. 
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Substituting (11) and (12) in (33) we get 
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3.1.10 Estimation of Parameters 

By using the different estimation approaches, we find estimates of the three constants ,k 

and   of KP-W probability distribution. 

(i) Maximum Likelihood Estimation 

Suppose that a random sample 
1 2
, , ...

n
Y Y Y  of size n from KP-W distribution is randomly drawn, 

then the  log-likelihood function is given by 
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To get the MLEs of ,k  and  , we differentiate the above expression with respect to  λ β 

and k and equate to zero. This gives the following system of equations 
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We can find the numerical solutions of MLEs of parameters ,k  and   with the help of any 

software like R, Matlab, or Mathematica.  

(ii) Least Squares Estimators 

The least squares estimators ˆ
LSE

k ; ˆ
LSE
  and ˆ

LSE
  of the unknown parameters k ,  and   of 

the KP-W distribution can be obtained by minimizing the following function  
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with respect to k ,  and  . That is least squares estimators can be obtained by solving the 

following system of differential equations given in (40)-(42).   
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(iii) Weighted Least Squares Estimation 

The weighted least squares estimators ˆ
WLSE

k ; ˆ
WLSE
  and ˆ

WLSE
  of the unknown 

parameters k ,  and   of the KP-W distribution can be obtained by minimizing the 

following function with respect to k ,  and  .  
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That is, the weighted least squares estimators can be obtained by solving the following system 

of differential equations given in (45)-(47). 
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where  , 1, 2, 3
t

i
A t   are same as given above. 

(iv) Cramer-Von-Mises Estimators 

The Cramer-Von-Mises estimators ˆ
CVME

k ; ˆ
CVME
  and ˆ

CVME
  of the unknown parameters 

k ,  and   of the KP-W distribution can be obtained by minimizing the following function 

with respect to k ,  and  .  
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That is, the Cramer-Von-Mises estimators can be obtained by solving the following system of 

differential equations given in (50)-(52). 
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where  , 1, 2, 3
t

i
A t   are same as given above. 
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4. Simulations Study 

To analyze the precision of the estimates of parameters of KP-W distribution, a simulations 

study is conducted. The parameters are estimated by using ML estimation. We generated 1000 

sample of sizes n = 20, 50 and 100 from the KP-W distribution. To generate the samples of 

different sizes from KP-W distribution, we have used the Quantile function of this model 

defined above. From each sample, we computed the estimates by using the method of ML 

estimation. The simulated averages and MSEs over 1000 repetitions are given in the following 

Table 1. From the Table 4.1, it is clear that the simulated values are close enough to the true 

values of parameters and if we increase the size of sample, the mean squared errors of these 

estimates decrease. 

Table 4.1: Simulated averages and mean squared errors (MSE) of MLEs for the parameters  ,   

and k of the KP-W distribution. 

 

5. Applications 

In this portion, we discuss the applications of KP-W distribution on those data-sets that belong 

to real life to prove the signification and flexibility of this model. 

(i) First real-life application 

The first data-set corresponds the monthly taxes revenue in Egypt (measured in 1000 million 

Egyptian pounds) for the period January 2006 to November 2010. This data-set is taken from 

[19]. This data-set consists of following observations, 

5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1, 6.7, 17, 8.6,9.7, 

39.2, 35.7, 15.7, 9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 

n = 20 

Parmaeters Average MLEs MSEs 

    k ̂  ̂  k̂  ̂  ̂  k̂  

0.5 0.1 1.1 0.548 0.198 1.37 2.292 0.342 0.158 

  2.0 0.558 0.209 2.786 1.762 0.269 5.872 

1.0 1.0 1.1 1.79 1.98 1.65 0.950 0.399 0.491 

  2.0 1.85 1.985 2.86 3.048 0.586 0.146 

n = 50 

0.5 0.1 1.1 0.527 0.179 1.26 1.056 0.165 0.104 

  2.0 0.546 0.186 2.479 0.792 0.119 0.786 

0..5 0.1 1.1 1.48 1.75 1.52 0.554 0.236 0.254 

  2.0 1.67 1.82 2.47 1.672 0.337 0.104 

n =100 

0.5 0.1 1.1 0.512 0.114 1.17 0.612 0.095 0.064 

  2.0 0.521 0.134 2.124 0.456 0.068 0.387 

0.5 0.1 1.1 1.16 1.35 1.29 0.342 0.141 0.175 

  2.0 1.18 1.43 2.34 0.871 0.187 0.069 
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20.5, 7.1, 7.7, 18.1, 16.5, 11.9, 7, 8.6, 12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 

7.1, 10.8 

We analyzed this data by the proposed technique, the KP-W distribution, and compared with 

different existing models mentioned in the Table 5.1 below. 

Table 5.1: AICs and BICs computed after fitting different distributions on Data set of Tax 

Revenues. 

Model AIC BIC 

Lgistic Eponential 389.35 393.51 

Weibull 398.58 402.73 

Exponential 427.01 429.09 

Marshal Olikin Logistic Eponential 387.34 393.58 

KP-W 386.79 393.02 

Lomax 429.0136 43.17 

Exponential Lomax 400.5883 406.82 

 

 

 

 data data 

Fig 3: Density Plots and CDF plots of different fitted distributions for Tax revenue data-set. 

 

 Theoretical probabilities Theoretical quantiles 
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Fig 4: PP and QQ plots for Tax revenue dataset and fitted distributions. 

 

(ii) Second real-life application 

The values in this 

set data set are 

Brake-Pads Life 

times for 98 Cars 

(units per 1000 

kilometers) taken 

from [20] The 

data-set 

consists of 

following values: 

38.7, 69.6, 86.7, 79.5, 49.2, 74.8, 43.8, 55.0,42.4, 32.9, 100.6, 46.8, 73.8, 51.5, 67.6, 124.5, 

46.7, 31.8, 89.5, 92.5, 44.1, 77.6, 60.3, 110.0, 61.9, 63.7, 103.6, 101.2,39.3, 83.0, 82.6, 59.4, 

49.8, 24.8, 88.0, 27.8, 46.3, 68.8, 42.4, 33.6, 56.2, 68.8, 68.9, 69.0, 50.5, 89.1, 95.7, 75.2, 54.9, 

65.0, 78.1, 58.4, 54.0, 65.1, 83.6, 105.6, 49.2, 59.3, 18.6, 56.2,44.8, 53.9, 92.6, 55.9, 15.8, 

30.9, 57.3, 83.8, 107.8, 47.4, 34.3, 123.5,81.6, 61.4, 105.6, 69.0,45.2, 72.8, 20.8, 101.9, 124.6, 

54.0, 52.0, 87.6, 64.0, 37.2, 77.2, 38.8, 83.0, 44.2, 68.9, 74.7, 143.6, 50.8, 78.7,43.4, 65.5, 

165.5 

The KP-W model is fitted to the above data and its performance is compared with that of the 

different competitor models mentioned in the Table 5.2 below. 

 

 

 

 

 

 

 

 

 

 

Table 5.2: AICs and BICs computed after fitting different distributions on Data set of Brake 

pads Lifetimes.  

 

Model AIC BIC 

Logitic Exponential 1131.04 1136.21 

Weibull 924.24 929.40 

Expoential 1021.56 1024.15 

Marshal Olik Logistic 

Exponential 
921.46 929.21 

KP-W 921.20 928.96 

Kumaraswamy Lomax 923.223 933.5630 

Lomax 1023.5669 1028.7368 

Expoentiated Lomax 926.2954 934.0503 

Weibull Lomax 923.4776 933.8175 

Expoentiated Weibull 921.2813 929.0362 
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 data data 

Fig. 5: Density and CDF plots for Brake pads lifetimes dataset and distributions. 

 

 Theoretical probabilities Theoretical quantiles 

Fig. 6: PP and QQ plots for Brake pads lifetime dataset and fitted distributions. 
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6. Conclusive remarks 

A new G class of probability distributions, named as KP-class of distributions, is presented. 

The suggested KP-class of distributions is based on the induction of an additional parameter 

resulting in more tractable distribution for analyzing the lifetime data. Further, we have derived 

expressions for moments, Rényi Entropy, ordered statistics, MRL and stress-strength 

parameter for the KP-W distribution, a sub-model of the proposed family. The method of ML 

estimation is used to estimate the parameters. The fitting of this KP- W distribution on two 

data-sets from real world also illustrated that the suggested distribution provides satisfactory 

goodness of fit measures in comparison to competitive probability distributions. From the 

tables 2 and 3, representing AICs and BICs of different models fitted on two different data 

sets, we can see that the AICs and BICs obtained after fitting the KP-W distribution are 

minimum and also we can see from the density, Q-Q, CDF and P-P plots that the KP-W 

probability distribution turns out to be a better choice for modeling the two real life data in 

comparison to the other existing probability distributions. 
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