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 Abstract 

In this paper, we used Yu-Toda-Sasa-Fukuyama (YTSF) model, the (2 + 1)-dimensional nonlinear 

evolution equation, and water wave propagation with surface tension to find new traveling wave 

solutions by applying exp(−ϕ(η))expansion method (EEM). The proposed nonlinear wave models 

are essential in coastal and offshore studies to understand wave propagation, wave transformation, 

and coastal processes. They also play a crucial role in cryptography, the regulation of heartbeats, 

and mathematical physics. We generate 3D, 2D, and contour plots of discovered solutions by 

selecting suitable values for arbitrary parameters within the accurate range space. Hyperbolic, 

trigonometric, and exponential functions are used to express the resulting traveling wave solutions. 

The received solutions included dark, bright, periodic, kink, singular, bell-type, hyperbolic solitary 

wave solutions, and many more. By changing model parameters, it is possible to change the 

dynamics of the solutions that the model generates. These results highlight the complexity and 

nonlinear behavior of the system, indicating the need for further analysis and providing valuable 

insights for understanding and modeling similar physical systems. This work breaks new ground 

by utilizing the EEM to uncover solitonic solutions for an unsolved model, pushing the boundaries 

of the existing literature by introducing a new mathematical technique for addressing fractional 

nonlinear physical models. The proposed method is brief, clear, and trustworthy, resulting in fewer 

calculations and broad application.   
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1. Introduction 

Nonlinear system theory has applications in many fields, including population growth [1], 

heartbeat regulation [2], cyber security [3], image encryption [4], and many more [5–9]. Due to 
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the multiple applications of nonlinear evolution equations (NLEEs), many researchers have 

developed an interest in solving these types of equations. The study of nonlinear partial 

differential equations (NLPDEs) is a very competitive and active subject of research in the areas 

of theoretical physics, applied mathematics, and numerous engineering applications [10–12]. To 

understand physical phenomena, it is necessary to obtain the outcomes of the governing NLPDEs. 

In the presence of noise or random events, PDEs are appropriate mathematical models for 

modeling complex systems. The research provides a significant contribution by looking at a wide 

variety of soliton solutions that cover different wave forms. Solitons are non-dispersive, self-

reinforcing wave packets that keep their form and speed while they move across a medium. 

Solitons are significant because they are present in almost every scientific field. Solitons are 

fundamental components of several physics disciplines, including nonlinear optics, condensed 

matter physics, and plasma physics. Additionally, they have uses in biology, engineering, and 

telecommunications [13–16]. Understanding and characterizing various solitons, such as dark 

solitons, bright solitons, kink solitons, and rogue waves, among others, offers prospects for 

technological improvement as well as useful insights into the behavior of complex systems [17]. 

This work advances knowledge of soliton dynamics and its applications in various fields by 

examining a broad spectrum of soliton solutions. Several unique methods have been devised to 

secure their exact and approximate solutions, allowing us to perform qualitative and quantitative 

analyses of these NLPDEs. These methods have been introduced during the past few decades, 

including the power series expansion technique [18], the exp-function methods [19–21], 

transformed rational function method [22], homotopy perturbation method [23], variational 

method [24], the improved F-expansion method [25, 26], direct algebraic method [27], the novel 

Kudryashov method [28–30], the modified Khater method [31], the extended Fan-expansion 

method [32], he’s variational iteration methods [33] and many others [34–36]. 

The YTSFE is a modification of the Bogoyavlenskii-Schif equation. In 2011, Darvishi [37] 

found a number of closed-form solutions to the (3+1)-dimensional potential YTSFE by employing 

the modified extended homo-clinic test technique. In 2014, researchers Hu et al. [38] employed 

the three-wave method to discover fresh kink multi soliton solutions pertaining to the potential 

YTSF equation. Wei Tan employed the extended homo-clinic test technique [39] in 2016 to get 

precise kinky breather-wave solutions. In 2017, Roshid [40] utilized the lump solution method to 

develop an exact solution for the YTSF equation, aiming to explore its potential for further study. 

In 2019, Zhao and He [41] utilized the bilinear method as a means to investigate the potential-

YTSF equation in fluid dynamics within a dimensional context. In 2022, Abdel-Gawad [42] used 

the power series expansion method and the Lie symmetry analysis methodology to provide 

accurate analytical solutions to the YTSFE. Additionally, Q. H. Zhu and J. M. Qi employed this 

equation in 2022 to obtain elliptic solutions and hyperbolic function solutions [43]. Numerous 

research teams have examined the solution of (2 + 1)-dimensional NLEEs through the application 

of analytical and numerical techniques. A. Bekir employed the tanh-coth method [44] as an 

analytical approach, while the sine-cosine method [45] was also utilized to solve NLEEs. Two 

variants of the (2 + 1)-dimensional Boussinesq-type equations with positive and negative 

exponents were explored by Feng et al. [46] for their bifurcations and overall dynamic behavior. 

The generalized auxiliary equation method has been successfully applied to the (2+1)-dimensional 

soliton equations by Zhang [47]. Using the Hirota method, Zhang et al. [48] investigated the 

double-lump solution for two-mode optical fiber. Chen and Liu created a unified Kadomtsev-

Petviashvili equation for surface and interfacial waves moving in a rotating channel. Das et al. 

[49] recently conducted a study focusing on the investigation of oblique scattering of surface 

waves by a thick partially immersed rectangular barrier. Recently, long-time survival results [50, 
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51] for gravity water waves of infinite depth have just been published. The proposed models give 

trustworthy and clear solutions by using the EEM. 

In this article, we present an EEM for directly discovering traveling wave solutions to 

nonlinear PDEs. The robustness and effectiveness of the EEM can vary depending on factors such 

as the complexity of the equations, the specific problem domain, and the underlying assumptions 

of the method. This mathematical technique has found applications in diverse scientific disciplines 

for obtaining solutions to both NLEEs and NLPDEs. J. Ahmad et al. used the EEM to study the 

soliton solutions of the Caudrey-Dodd-Gibbon equation [52]. In 2018, Jalil Manafian employed 

nonlinear Boussinesq equations to generate some new traveling and periodic solitary waves [53]. 

In 2021, Haci Mehmet Baskonus et al. applied the EEM to develop dark and singular soliton 

solutions for the Chen-Lee-Liu equation [54]. Pankaj et al. [55] applied the EEM to soliton 

solutions of the nonlinear Schrodinger system. We apply the proposed method to certain NLPDEs, 

such as the YTSF model [56, 57], the (2+1)-dimensional NLEEs [58, 59], and the water wave 

propagation with surface tension [60, 61]. Wave transformation can be used to turn the NLPDEs 

into nonlinear ordinary differential equations (NLODEs) and then obtain closed-form solutions to 

these equations. Further analysis and comparison of the different methods, taking into account 

factors like accuracy, convergence properties, computational efficiency, and applicability to 

various problem domains, would be needed to determine the effectiveness of the EEM relative to 

other existing approaches. Real-world applications such as bacterial growth and compound interest 

are frequently represented using the EEM. The EEM is commonly used in the biological sciences 

to estimate the amount of a certain quantity over time, such as population size. 

Based on the existing literature, research gaps in the study of the proposed models may be 

found. While various methods were used to find exact solutions for the presented models, there are 

still areas that need to be investigated further. Exploring the use of different solution methods, 

such as the inverse scattering transform [62], Darboux transformation [63], or Backlund 

transformation [64], to produce novel exact solutions for the proposed models is one potential 

direction of investigation. These methods have been successful in resolving several varieties of 

nonlinear differential equations and may offer fresh perspectives on how the problem behaves in 

various scenarios. The examination of the physical implications of the discovered solutions 

represents another area for future investigation. We may gain a deeper knowledge of the behavior 

of the equation and its applicability to realworld situations by investigating the qualities and 

characteristics of the soliton solutions, such as their stability, interaction behavior, and influence 

on fluid dynamics. Additionally, investigating the relationship between the discovered solutions 

and experimental or observational data might aid in validating the solutions’ applicability for use 

in real-world situations. 

Future studies may combine analytical methods, numerical simulations, and experimental 

validations to fill up these research gaps. Theoretical research might concentrate on creating novel 

methods to solving problems or improving already-existing ones to produce a wider range of exact 

solutions. To examine the equation’s dynamics and confirm the stability and applicability of the 

discovered solutions, numerical simulations can be used. The outcomes of experimental 

investigations, such as laboratory tests or field measurements, can be compared to and validated 

with useful data. Overall, more investigation is required to examine different methods to solving 

the problems, examine the physical effects of the discovered solutions, and test the results using 

numerical simulations and experimental experiments. We are able to better understand the 

proposed models and their uses in fluid mechanics by filling in these research gaps, which will 

open the door for more thorough and accurate models in this area. 
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The structure of this research paper is as follows: An introduction to Sect. 1 is provided at the 

outset. Sect. 2 has a description of the EEM. Different structures of the soliton solutions of the 

YTSF model, the (2+1) dimensional NLEE, and the propagation of water waves with surface 

tension are described in Sect. 3. In Sect. 4 the results are described with the use of graphs. Sect. 5 

contains the conclusion..  

2. Materials and Methods 

In this section, we’ll use the YTSF model, (2+1)-dimensional NLEE, and water wave propagation 

with surface tension to put the above-discussed methodology into work. 

2.1 Description of the exp(-ϕ(η))-expansion method 

Consider the general NLPDE.  

                              P(u,  ut,  ux,  uy,  utt,  uxt,  uxy,  uxx, . . . )  =  0.                                                         (1) 

The wave transformation for (3+1)-dimensional NLPDE is given as 

                              u(x, y, z, t) =  u(η),       η =  ax + by + cz − kt.                                                    (2) 

The wave transformation for (2+1)-dimensional NLPDE is given as 

                          u(x, y, t) =  u(η),            η =  ax + by − kt.                                                               (3) 

The wave transformation for (1+1)-dimensional NLPDE is given as 

                          u(x, t) =  u(η), η =  ax − kt.                                                                                    (4) 

By applying wave transformation, we have 

                          Q(u, u′, u′′, u′′′…) = 0,                                                                                               (5) 

where ′ represents derivative with respect to 𝜂.  

(1) 

 (2) 

The solutions of Eq. (5) can be expressed with the help of the EEM as 

                                                     u(η) = ∑ 𝑎𝑛
𝑀
𝑛=0 (exp (− ϕ(η)))𝑛,                                                   (6) 

where 𝑎𝑛 are constants, 𝑎𝑛  ≠  0 and 0 ≤ 𝑛 ≤ 𝑀. 
                             = µ exp(ϕ(η )) +  exp(−ϕ(η)) +  λ,))𝑛,                                                   (7) 

where ' represents derivative with respect to η. Eq. (7) has the following solutions: 

Family-i: 

If µ ≠  0 and 𝜆2  −  4µ >  0, then 

                                                 ϕ(η)  = ln (
−√λ2 − 4µ

2µ
tanh (

√λ2 − 4µ

2
(η + H)) −

λ

2µ
.                 (8) 

Family-ii: 

If µ ≠  0  and 𝜆2  −  4µ <  0, then 

                                                   ϕ(η)  = ln (
√λ2− 4µ

2µ
tan (

√λ2 − 4µ

2
(η + H)) −

λ

2µ
.                                (9) 

Family-iii: 

If µ =  0, 𝜆 ≠ 0 and 𝜆2  −  4µ >  0, then 

                                                            ϕ(η) = − ln (
λ

exp (λ(η+H))−1
).                                                    (10) 

Family-iv: 

If µ ≠  0, 𝜆 ≠ 0 and 𝜆2  −  4µ =  0, then 

                                              ϕ(η)  = ln (
2(λ(η+H)+2

λ2(η+H)
).                                                              (11) 

Family-v: 

If µ =  0, 𝜆 =  0 and 𝜆2  −  4μ =  0, then 

                                                           ϕ(η)  =  ln(η +  H).                                                                   (12) 

(3) 
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2.2   Yu-Toda-Sasa-Fukuyama model 

Considering the (3 + 1) dimensional YTSF model [38]. 

uxxxz − 4uxt + 4uxuxz + 2uxxuz + 3uyy = 0,                       (13) 

where 𝑝: ℝ𝑥 × ℝ𝑦 × ℝ𝑧 → ℝ  in a such a way that 𝑝 = 𝑢𝑥. By using wave transformation of Eq. 

(2), which converts the NLFDEs into NLODEs. 

                                            a3cu(4) + 6a2cu′u′′ + 4aku′′ + 3b2u′′ = 0.                                     (14) 

By integrating Eq. (21) with respect to 𝜂 we have 

                               a3cu(3) + 3a2c(u′)2 + 4aku′ + 3b2u′ = 0.                                                   (15) 

By using the balance technique on Eq. (15) between (𝑢′)2 and 𝑢(3) , we get n=1. Now for n=1, we 

have 

                                   𝑢(𝜂) = 𝐴𝑜 + 𝐴1 exp(−𝜙(𝜂)).                                                                   (16) 

where 𝐴𝑜 and 𝐴1 are constants to be determined. Adding Eq. (7), Eq. (8), and Eq. (16) into Eq. 

(15), we have 

               [C−4e
−4ϕ(η) + C−3e

−3ϕ(η) + C−2e
−2ϕ(η) + 𝐶−1𝑒

−𝜙(𝜂) + 𝐶𝑜] = 0,                                (17) 

where 

C−4 = 3a
2A1

2c − 6a3A1c, 

C−3 = 6a
2A1

2cλ − 12a3A1cλ, 

                       C−2 = −7a
3A1cλ

2 − 8a3A1cμ + 3a
2A1

2cλ2 + 6a2A1
2cμ − 4aA1k − 3A1b

2,                            

C−1 = a
3A1(−c)λ

3 − 8a3A1cλμ + 6a
2A1

2cλμ − 4aA1kλ − 3A1b
2λ, 

C0 = −a
3A1cλ

2μ − 2a3A1cμ
2 + 3a2A1

2cμ2 − 4aA1kμ − 3A1b
2μ. 

                           {C−4 = 0, C−3 = 0, C−2 = 0, C−1 = 0, C0 = 0.                                                  (18) 

Solving the system, we obtain 

(18) 

 {A1 = 2a, k = −
a3cλ2−4a3cμ+3b2

4a
.                                             (19)  (19) 

Eq. (13) has the following solutions: 

Family-i: 

u1(x, y, z, t)

=
2a

−

√λ2 − 4μ tanh (
1
2√λ

2 − 4μ (
t(a3cλ2 − 4a3cμ + 3b2)

4a + aX + bY + cZ + H))

2μ
−
λ
2μ

+ 𝐴𝑜. 
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Family-ii:  

u2(x, y, z, t)

=
2a

−

√4μ − λ2 tan (
1
2√4μ − λ

2 (
t(a3cλ2 − 4a3cµ + 3b2)

4a + aX + bY + cZ + H))

2μ
−
λ
2μ

+ 𝐴𝑜. 

Family-iii:  

u3(x, y, z, t) =
2aλ

exp (λ (
t(a3cλ2 − 4a3cµ + 3b2)

4a
+ aX + bY + cZ + H)) − 1

+ Ao. 

Family-iv 

u4(x, y, z, t) =
4a (λ (

t(a3cλ2 − 4a3cμ + 3b2)
4a

+ aX + bY + cZ + H) + 2)

λ2 (
t(a3cλ2 − 4a3cμ + 3b2)

4a
+ aX + bY + cZ + H)

+ Ao. 

Family-v 

u5(x, y, z, t) =
2a

3b2t
4a

+ aX + bY + cZ + H
+ Ao. 

2.3 (2+1)-dimensional nonlinear evolution equation 

 

Taing the (2+1)-dimensional NLEE [65]. 

           uxxxx  +  c1utt  +  c2uxt  +  c3uxy + c4u
2
xx = 0,                                                              (20) 

where 𝑝:ℝ𝑥 × ℝ𝑦 → ℝ   in a such a way that 𝑝 =  𝑢𝑥  and 𝑐1, 𝑐2,𝑐3, 𝑐4  are arbitrary constants. By 

using wave transformation of Eq. (3), which converts the NLFDEs into NLODEs 

                                a4 u(4) + c4(2a
2u u′′ + 2a2(u′)2 ) + abc3 − ac2ku

′′ + c1k
2u′′ = 0.        (21) 

By integrating Eq. (21) with respect to 𝜂 , we have  

a4u′′  +  a2c4u
2  +  𝑎𝑏c3𝑢 −  𝑎c2𝑘𝑢 +  c1k

2𝑢 =  0.              (22) 

By using the balance technique on Eq. (22) between u2 and u′′,  we get n =2. 

Now for n = 2,  we have 

(22) 

u(η) = Ao + A1 exp(−ϕ(η)) + A2 exp(−2ϕ(η)).                                                                     (23) 

Substituting Eq. (7), Eq. (8), and Eq. (23) into Eq. (22), we have 

 

( 

[𝐷-4e−4ϕ
(η) + 𝐷−3e

−3ϕ(η)  +  𝐷-2e−2ϕ
(η)  +  𝐷-1e−ϕ

(η)  +  𝐷0]  =  0,                                         (24) (24) 
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where 

                                                                                

𝐷-4 = 6  𝑎4𝐴2 + 𝑎2𝐴2
2 𝑐4, 

𝐷-3 =  10𝑎4𝐴2𝜆 +  2𝑎4𝐴1 + + 2𝑎4𝐴1 𝐴2𝑐4, 

𝐷-2 =  4𝑎4𝐴2𝜆2  +  3𝑎4𝐴1 𝜆 +  8𝑎4 𝐴2µ + 2𝑎2 𝐴2𝑐4𝐴0 + 𝑎2𝐴1
2 𝑐4 +  𝑎𝐴2 𝑏𝑐3 − 𝑎𝐴2 𝑐2𝑘 +  𝐴2 𝑐1𝑘2,  

𝐷-1 =  𝑎4𝐴1𝜆2 +  6𝑎4𝐴2𝜆µ +  2𝑎4𝐴1µ +  2𝑎2𝐴1𝑐4𝐴o +  𝑎𝐴1𝑏𝑐3 −  𝑎𝐴1𝑐2𝑘 +  𝐴1𝑐1𝑘2, 

𝐷0 =  𝑎4𝐴1𝜆µ +  2𝑎4𝐴2µ2 + 𝑎2 𝑐4𝐴0
2 +  𝑎𝑏𝑐4𝐴0  −  𝑎𝑐4 𝑘𝐴0  +  𝑐1𝑘2𝐴0. 

 

                                          {
𝐷-4 = 0, 𝐷-3 = 0,

𝐷-2 = 0, 𝐷-1 = 0, 𝐷0 = 0.
                                                                  (25) 

Case 1:  

          

{
  
 

  
 𝐴0 = −

 6𝑎2 µ 

𝑐4

 ,

𝐴0 = −
 6𝑎2

𝑐4
,  

𝜆 = −
𝐴1𝑐4

6𝑎2
𝐴1
2,

𝑘 =
√144𝑐1 (144𝑎4µ−36𝑎𝑏𝑐3+𝐴1

2𝑐2
2)+1296𝑎2 𝑐2

2 +36𝑎𝑐2

72𝑐1

,

                                                              (26) 

where A_0 and A_2 are free parameters. Eq. (20) has the following solutions. By using Eq. (7), 

Eq. (23), Eq. (24), Eq. (25), and Eq. (26), we have the following solutions: 

Family-i: 

u1(x, y, t) =

−
6a2

c4(
A1c4
12a2μ

−

√A1
2c4

2

36a2
−4μtanh

(

 
 1
2
√A1

2c4
2

36a2
−4μ

(

 −
t(√144c1(144a

4μ−36abc3−A1
2c4

2)+1296a2c2
2+36ac2

72c1
aX+bY+H

)

 

)

 
 

 
2μ

)2

+

A1

A1c4
12a2μ

−

√A1
2c4

2

36a2
−4μtanh

(

 
 1
2
√A1

2c4
2

36a2
−4μ

(

 −
t(√144c1(144a

4μ−36abc3−A1
2c4

2)+1296a2c2
2+36ac2

72c1
aX+bY+H

)

 

)

 
 

 
2μ
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Family-ii: 

u2(x, y, t) =

−
6a2

c4(
A1c4
12a2μ

−

√4μ−
A1

2c4
2

36a2
tan

(

 
 1
2
√4μ−

A1
2c4

2

36a2

(

 −
t(√144c1(144a

4μ−36abc3−A1
2c4

2)+1296a2c2
2+36ac2

72c1
aX+bY+H

)

 

)

 
 

 
2μ

)2

+

A1

A1c4
12a2μ

−

√4μ−
A1

2c4
2

36a2
tan

(

 
 1
2
√4μ−

A1
2c4

2

36a2

(

 −
t(√144c1(144a

4μ−36abc3−A1
2c4

2)+1296a2c2
2+36ac2

72c1
aX+bY+H

)

 

)

 
 

 
2μ

  

Family-iii: 

u3(x, y, t) =  −
6a2μ

c4
−

A1
2c4

6a2

(

 
 
 
 

exp

(

 
 
 
 

−(

 −
A1c4 (−t(√144c1(144a

4μ−36abc3−A1
2c4

2)+1296a2c2
2+36ac2)

72c1
aX+bY+H

)

 

2μ

)

 
 
 
 

−1

)

 
 
 
 

−

A1
2c4

6a2(exp

(

 
 
 
 

−(

 −
A1c4 (−t(√144c1(144a

4μ−36abc3−A1
2c4

2)+1296a2c2
2+36ac2)

72c1
aX+bY+H

)

 

2μ

)

 
 
 
 

−1)2

.  

Family-iv: 

u4(x, y, t) =  −
6a2μ

c4
+

72a4((

 2−
A1c4 (−t(√144c1(144a

4μ−36abc3−A1
2c4

2)+1296a2c2
2+36ac2)

72c1
aX+bY+H

)

 

6a2
)

A1c4
2(2−

A1c4 (−t(√144c1(144a
4μ−36abc3−A1

2c4
2)+1296a2c2

2+36ac2)

72c1
aX+bY+H)

−

3110a10((

 2−
A1c4 (−t(√144c1(144a

4μ−36abc3−A1
2c4

2)+1296a2c2
2+36ac2)

72c1
aX+bY+H

)

 

2

6a2
)

A1
4c4

5(
−t(√144c1(144a

4μ−36abc3−A1
2c4

2)+1296a2c2
2+36ac2)

72c1
aX+bY+H)

2   
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Family-v: 

u4(x, y, t) =  −
6a2

c4(
 −t(√144c1(−36abc3−A1

2c4
2)+1296a2c2

2+36ac2)

72c1
aX+bY+H)

2 +

A1

 −t(√144c1(−36abc3−A1
2c4

2)+1296a2c2
2+36ac2)

72c1
aX+bY+H

+ A0.  

2.4    Water wave propagation with surface tension 

Finally, taking equation of water wave propagation with surface tension [60]. 

utt –  uxx +  auxxxx –  buxxtt+  utuxx + 2uxuxt = 0,                                                                (27) 

where a and b are arbitrary constants. With the help of wave transformation of Eq. (4), we have 

𝑎𝑘4𝑢(4) −  𝑏𝑐2𝑘2𝑢(4) +  𝑐2𝑢′′ −  3𝑐𝑘2𝑢′𝑢′′ −  𝑘2𝑢′′ = 0.                                                              (28) 

By integrating Eq. (28) with respect to  , we have 

ak4u(4) −  bc2k2u(3) +  c2u′ − 
3

2
ck2  (u′)2 −  k2u′ = 0.                                                               (29) 

By using the balance technique on Eq. (29) between (𝑢′)2 and 𝑢(3), we get n = 1. Now for n = 1, 

we have 

𝑢(𝜂)  =  𝐴o +  𝐴1 𝑒𝑥𝑝(−𝛷(𝜂)).                                                                                                    (30) 

Substituting Eq. (7), Eq. (8), Eq. (30) into Eq. (27), we have 

[𝐸-4𝑒-4Φ(η)
 +  𝐸-3𝑒-3Φ(η)

 +  𝐸-2𝑒-2Φ(η) +  𝐸-1𝑒-Φ(η) +  𝐸0]  =  0,                                                        (31) 

where 

𝐸-4 = −6𝑎𝐴1𝑘4 +  6𝐴1𝑏𝑐2𝑘2 −  
3

2
𝐴1 2𝑐 𝑘2 , 

𝐸-3 = −12𝑎𝐴1⅄  𝑘4 +  12𝐴1𝑏𝑐 2 ⅄  𝑘2 −  3𝐴1 2𝑐 ⅄ 𝑘2 , 

𝐸-2 = −7𝑎𝐴1⅄2𝑘4 − 8𝑎𝐴1  𝑘4 µ + 7𝐴1𝑏𝑐 2⅄2𝑘2 + 8𝐴1𝑏𝑐 2𝑘2 µ + 𝐴1𝑐2 −
3

2
𝐴1 2𝑐 ⅄2𝑘2 − 3𝐴1 2𝑐 𝑘2 µ

+ 𝐴1
   𝑘2, 
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𝐸-1 = −𝑎𝐴1⅄3𝑘4 − 8𝑎𝐴1⅄  𝑘4 µ + 𝐴1𝑏𝑐 2⅄3𝑘2 + 8𝐴1𝑏𝑐 2 ⅄𝑘2 µ − 𝐴1𝑐2 ⅄ − 3𝐴1 2𝑐 ⅄𝑘2 µ + 𝐴1
  ⅄ 𝑘2, 

𝐸0 = −𝑎𝐴1⅄2𝑘4µ − 2𝑎𝐴1  𝑘4 µ2 + 𝐴1𝑏𝑐 2⅄2𝑘2µ + 2𝐴1𝑏𝑐 2𝑘2µ2 − 𝐴1𝑐2 µ −
3

2
𝐴1 2𝑐 𝑘2µ2 + 𝐴1

   𝑘2µ, 

                                                              {
𝐸-4 = 0, 𝐸-3 = 0,

𝐸-2 = 0, 𝐸-1 = 0, 𝐸0 = 0.
                                                (32) 

Solving the system, we obtain  

Case1: 

{
 
 

 
 
𝐴1 = −

2𝑎𝑏𝑐 2⅄ 2

𝑎⅄ 2−4𝑎𝜇
−
8𝑎𝑏𝑐 2µ

𝑎⅄2 −4𝑎µ
−
2𝑎√(−𝑏𝑐 2⅄2+4𝑏𝑐 2𝜇−1) 2−4𝑐 2(𝑎⅄ 2−4𝑎𝜇)

𝑎⅄2 −4𝑎µ
+

2𝑎

𝑎⅄2 −4𝑎µ
−4𝑏𝑐 2

𝑐
  ,                                   

𝐾 = −√−
2𝑏𝑐 2µ

𝑎⅄ 2−4𝑎𝜇
+

𝑏𝑐 2⅄2

2(𝑎⅄ 2−4𝑎𝜇)
−

√(−𝑏𝑐 2⅄2+4𝑏𝑐 2𝜇−1) 2−4𝑐 2(𝑎⅄ 2−4𝑎𝜇)

2(𝑎⅄ 2−4𝑎𝜇)
+

1

2(𝑎⅄ 2−4𝑎𝜇)
.

             (33) 

By using Eq. (6), Eq. (7), Eq. (30), Eq. (32) and Eq. (33), we have the following solutions: 

Family i: 

𝑢1(𝑥, 𝑡) = 𝐴𝑜 −

2𝑎𝑏𝑐 2⅄ 2

𝑎⅄ 2−4𝑎𝜇
−
8𝑎𝑏𝑐 2µ

𝑎⅄2 −4𝑎µ
−
2𝑎√(−𝑏𝑐 2⅄2+4𝑏𝑐 2𝜇−1) 2−4𝑐 2(𝑎⅄ 2−4𝑎𝜇)

𝑎⅄2 −4𝑎µ
+

2𝑎

𝑎⅄2 −4𝑎µ
−4𝑏𝑐 2

𝑐

(

 
 
 
 

−

√⅄ 2−4𝜇 𝑡𝑎𝑛ℎ

(

 1
2√⅄

 2−4𝜇 (−𝑋√−
2𝑏𝑐 2µ

𝑎⅄ 2−4𝑎𝜇+
𝑏𝑐 2⅄2

2(𝑎⅄ 2−4𝑎𝜇)
−
√(−𝑏𝑐 2⅄2+4𝑏𝑐 2𝜇−1) 2−4𝑐 2(𝑎⅄ 2−4𝑎𝜇)

2(𝑎⅄ 2−4𝑎𝜇)
+

1
2(𝑎⅄ 2−4𝑎𝜇)

−𝑐𝑡+𝐻)

)

 

2𝜇
−
⅄

2𝜇
)

)

 
 
 
 
 

  

Familyii: 

𝑢2(𝑥, 𝑡) = 𝐴𝑜 −

2𝑎𝑏𝑐 2⅄ 2

𝑎⅄ 2−4𝑎𝜇
−
8𝑎𝑏𝑐 2µ

𝑎⅄2 −4𝑎µ
−
2𝑎√(−𝑏𝑐 2⅄2+4𝑏𝑐 2𝜇−1) 2−4𝑐 2(𝑎⅄ 2−4𝑎𝜇)

𝑎⅄2 −4𝑎µ
+

2𝑎

𝑎⅄2 −4𝑎µ
−4𝑏𝑐 2

𝑐

(

 
 
 
 √4𝜇−⅄

 2 𝑡𝑎𝑛

(

 1
2√
4𝜇−⅄ 2 (−𝑋√−

2𝑏𝑐 2µ
𝑎⅄ 2−4𝑎𝜇

+
𝑏𝑐 2⅄2

2(𝑎⅄ 2−4𝑎𝜇)
−
√(−𝑏𝑐 2⅄2+4𝑏𝑐 2𝜇−1) 2−4𝑐 2(𝑎⅄ 2−4𝑎𝜇)

2(𝑎⅄ 2−4𝑎𝜇)
+

1
2(𝑎⅄ 2−4𝑎𝜇)

−𝑐𝑡+𝐻)

)

 

2𝜇
−
⅄

2𝜇

)

 
 
 
 

  

Familyiii: 

𝑢3(𝑥, 𝑡) = 𝐴𝑜 −

2𝑎𝑏𝑐 2⅄ 2

𝑎⅄ 2−4𝑎𝜇
−
8𝑎𝑏𝑐 2µ

𝑎⅄2 −4𝑎µ
−
2𝑎√(−𝑏𝑐 2⅄2+4𝑏𝑐 2𝜇−1) 2−4𝑐 2(𝑎⅄ 2−4𝑎𝜇)

𝑎⅄2 −4𝑎µ
+

2𝑎

𝑎⅄2 −4𝑎µ
−4𝑏𝑐 2

𝑐(𝑒𝑥𝑝(⅄(−𝑋√−
2𝑏𝑐 2µ

𝑎⅄ 2−4𝑎𝜇
+

𝑏𝑐 2⅄2

2(𝑎⅄ 2−4𝑎𝜇)
−
√(−𝑏𝑐 2⅄2+4𝑏𝑐 2𝜇−1) 2−4𝑐 2(𝑎⅄ 2−4𝑎𝜇)

2(𝑎⅄ 2−4𝑎𝜇)
+

1

2(𝑎⅄ 2−4𝑎𝜇)
−𝑐𝑡+𝐻))−1)

  

Familyiv: 
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𝑢4(𝑥, 𝑡) =  4 (⅄𝑥√
−2√(𝑏𝑐 2(⅄2−4𝜇)+1) 2−4𝑎𝑐 2(⅄ 2−4𝜇) +2𝑏𝑐 2(⅄ 2−4𝜇)+2

𝑎(⅄ 2−4𝜇)
+ 2𝑐⅄𝑡 − 2𝐻⅄ −

4)

(

 
 √(𝑏𝑐 2(⅄2−4𝜇)+1) 2−4𝑎𝑐 2(⅄ 2−4𝜇) +𝑏𝑐 2(⅄ 2−4𝜇)−1

𝑐⅄ 2(⅄ 2−4𝜇)(𝑋√
−2√(𝑏𝑐 2(⅄2−4𝜇)+1) 2−4𝑎𝑐 2(⅄ 2−4𝜇) +2𝑏𝑐 2(⅄ 2−4𝜇)+2

𝑎(⅄ 2−4𝜇)
+2𝑐𝑡−2𝐻)

)

 
 
+ 𝐴𝑜.  

Familyiv: 

𝑢5(𝑥, 𝑡) =  𝐴𝑜 +
4𝑏𝑐

−𝑐𝑡+𝐻+𝑘𝑥
.  

3. Results and Discussion 

In this section, we provide a graphical representation of our proposed method and demonstrate its 

validity by numerical simulation of all sections of models. Solitons are physically represented by 

localized wave packets or envelopes in the NLEEs that maintain their form and move across the 

medium without distortion or dispersion. The structures of their dynamical behavior are 

investigated using the physical interpretation of the given solutions. This is demonstrated by 

numerical simulations, which are accomplished by selecting appropriate arbitrary functions as well 

as constants appearing in equation solutions. We realize that the solutions discovered may be 

helpful in comprehending different physical phenomena. The needed research is successful in 

coming up with novel solutions to the necessary models. Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, and 15 display the acquired solutions in three-dimensional (3D), two-dimensional (2D), 

and contour graphs to describe the physical behavior of waves propagating in a nonlinear medium. 

There are many different parameters in these solutions. Because the parameters determine the 

shape of the solution, we can generate a wide range of graphs by changing their values. They 

include solutions for periodic, dark, bright, hyperbolic, kink, and hyperbolic soliton systems. They 

are extremely useful for regulating information transfer in optical fiber networks and controlling 

the dynamics of light pulses. They have the ability to convey information, behave like particles, 

and might be used in spintronics, quantum computing, and energy-efficient electronics. These 

recently discovered exact solutions have significant physical consequences.  
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Fig. 1. 3D, contour, density, and 2D plots via u_1 (x,y,z,t) with µ = 1,z = 1.2,a = 2.5,b = 0.9,λ = 2.5,c = 0.4,A_o= 0.3,H = 
0.5,  and y = 0.5,  for - 6 ≤ x ≤ 6,-6 ≤ t ≤ 6. 

 

 
Fig. 2. 3D, contour, density, and 2D plots via u_1 (x,y,z,t) with µ = 1,z = 1.2,a = 2.5,b = 0.9,λ = 2.5,c = 

0.4,A_o= 0.3,H = 0.5,  and y = 0.5,  for - 6 ≤ x ≤ 6,-6 ≤ t ≤ 6 
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Fig. 3. 3D, contour, density, and 2D plots via u_3 (x,y,z,t) with µ = 1,   c = 0.9,a = 3.5,H = 1.5,b = 1.8,λ = 

1.5,b = 0.8,A_o= 0.7,y = 0.5,  and z = 0.4,for - 6 ≤ x ≤ 6,-6 ≤ t ≤ 6. 

 
Fig. 4. 3D, contour, density, and 2D plots via u_4 (x,y,z,t) with µ = 1,c = 0.5,a = 2.9,H = 1.5,b = 1.6,λ = 2,b = 

0.8,〖 A〗_o  = 0.7,y = 2.7,  and z = 3,  for - 6 ≤ x ≤ 6,-6 ≤ t ≤ 6. 
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Fig. 5. 3D, contour, density, and 2D plots via u_5 (x,y,z,t) with c = 1.7,a = 2.9,H = 1.5,b = 2.2,A_o= 1.7,y = 

2.1,and z = 2,  for - 6 ≤ x ≤ 6,-6 ≤ t ≤ 6. 

 
Fig. 6. 3D, contour, density, and 2D plots via u_1(x, y, t) with µ = 0.5,〖  c〗_4  = 1.5,a = 0.3,A_1  = 1,H = 

0.8,y = 1,〖 c〗_2  = 0.8,〖 c〗_1  = 0.8,〖 c〗_3  = 0.7,and b = 0.5,for - 6 ≤ x ≤ 6,-6 ≤ t ≤ 6. 
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Fig. 7. 3D, contour, density, and 2D plots via u_2 (x,y,t)  with µ = 1,〖 c〗_4  = 1.5,a = 1,〖  A〗_1  = 1,H = 0.8,   

y = 1,〖 c〗_2  = 0.8,〖 c〗_1  = 0.8,〖 c〗_3  = 0.7,and b = 0.5,0 - 0.5 ≤ x ≤ 1,-0.5 ≤ t ≤ 1. 

 
Fig. 8. 3D, contour, density, and 2D plots via u_3 (x,y,t)  with µ = 0,〖  c〗_4  = 1.5,a = 0.3,A_1  = 0.8,y = 1,〖 

c〗_2  =0.8,c_1  = 0.8,〖c 〗_3= 0.7,and b = 0.5,for - 4 ≤ x ≤ 4,-4 ≤ t ≤ 4. 
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Fig. 9. 3D, contour, density, and 2D plots via u_4 (x,y,t)  with µ = 1,〖  c〗_4  = 1.5,a = 0.3,A_1  = 1,H = 0.8,y 

= 1,〖 c〗_2  = 0.8,c_1  = 0.8,c_3  = 0.7,and b = 0.5,for - 3 ≤ x ≤ 3,-3 ≤ t ≤ 3. 

 
Fig. 10. 3D, contour, density, and 2D plots via u_5 (x,y,t)  with µ = 0,〖  c〗_4  = 0.5,a = 0.5,〖 A〗_o  = 0,H = 

0.8,y = 1,〖  c〗_2  = 0.8,〖 c〗_1  = 0.8,〖  c〗_3  = 0.7,and b = 0.5,for - 3 ≤ x ≤ 3,-3 ≤ t ≤ 3. 
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Fig. 11. 3D, contour, density, and 2D plots via 〖u_1 (x,t)  with µ = 1,c = 1.5,a = 0.5,H = 0.5,b = 1,λ = 2.5,b = 

0.8,and A_o  = 0.7,for - 6 ≤ x ≤ 6,-6 ≤ t ≤ 6.〗 

 
Fig. 12. 3D, contour, density, and 2D plots via u_2 (x,t)  with µ = 1,c = 1.5,a = 0.5,〖  A〗_1  = 1,H = 0.5,b = 1,λ 

= 1.5,b = 0.8,and A_o  = 0.7,for - 2 ≤ x ≤ 2,-2 ≤ t ≤ 2. 
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Fig. 13. 3D, contour, density, and 2D plots via u_3 (x,t)with µ = 1,c = 1.5,a = 0.5,A_1  = 1,H = 0.5,b = 1,λ = 

1.5,b = 0.8,and A_o  = 0.7,for - 2 ≤ x ≤ 2,-2 ≤ t ≤ 2. 

 
Fig. 14. 3D, contour, density, and 2D plots via u_4 (x,t)  with µ = 1,c = 1.5,a = 1.5,H = 2.5,b = 2.5,λ =1.5 ,b = 

1.8,and A_o  = 2.7,for - 3 ≤ x ≤ 3,-3 ≤ t ≤ 3. 
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Fig. 15. 3D, contour, density, and 2D plots via u_5 (x,t)  with c = 1.5,a = 0.5 ,A_1  = 1,H = 0.5,b = 1,b =0.8,  

A_o  = 0.7,and k = 0.9,for - 3 ≤ x ≤ 3,-3 ≤ t ≤ 3. 

4. Conclusion 

The EEM is used in this paper to investigate the aforementioned models. By applying the 

proposed method, we obtained several solutions in the form of hyperbolic functions and 

exponential function solutions. Researching NLPDEs in mathematics can be done effectively 

using the EEM. The exact soliton solutions are tremendous and exquisite for researchers and 

mathematicians due to their practical applications in engineering. Solitons may arise in water 

waves and are crucial for the study of rogue waves and tsunamis. Optical solitons can be 

visualized as localized intensity peaks or waveforms that propagate through the fiber without 

spreading out or deforming. In order to develop structures and coastal protection measures, 

solitary wave models are used to comprehend and forecast the behavior of huge waves in oceans 

and coastal areas. The outcomes are applicable to many academic disciplines, notably fluid 

dynamics. The computational effort used in addition to graphical representations enhances the 

proposed method’s accuracy. The calculated solutions in this study are wider than in earlier 

studies. 

The received solutions in this study span a variety of wave types, including bell-type, 

hyperbolic solitary wave solutions, dark, bright, periodic, kink, singular, and more. These diverse 

solutions have a number of advantages in several scientific and technical domains. Understanding 

localized wave phenomena, such as depressions and amplifications, which are important in coastal 

studies, wave transformation, and coastal dynamics, requires knowledge of dark and bright 

solitary wave solutions. In order to forecast wave propagation and interference, periodic wave 

solutions are useful for evaluating wave behavior across time [66]. Kink solitary wave solutions 

contribute to the understanding of wave-breaking events and nonlinear dynamics by explaining 

sudden shifts and discontinuities in wave profiles [67]. Bell-type solitary wave solutions can be 

used to describe localized disturbances and coherent structures, whereas singular wave solutions 

offer insights into severe wave occurrences and aberrant wave behavior [68]. For the study of 

stability and interaction phenomena in fluid dynamics, optics, and plasma physics, hyperbolic 
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solitary wave solutions are crucial. Overall, the wide range of wave solutions discovered in this 

work offers insightful information on the system’s complexity and nonlinear behavior, 

encouraging future investigation and improving our knowledge of related physical systems. 

The method proposed in this study is both conventional and straightforward for dealing with 

challenging and time-consuming algebraic calculations. The required conclusions are recent and 

have never been covered in the literature. Solitons have an impact on phase changes and material 

characteristics. Research is now being done to determine their function in regulating and 

modifying the physical characteristics of materials, which might lead to improvements in the 

disciplines of nanotechnology and materials engineering. Studying the dynamics and interactions 

of solitons is crucial for understanding their stability and behavior in realistic conditions. In the 

future, research may concentrate on creating unique methods for regulating soliton dynamics, 

manipulating soliton interactions, and improving their stability. The updated generalized rational 

exponential function method can be used in the future to study our recommended models. 
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