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Abstract—Analog filters are currently used for many 

purposes in most electronic circuits. For example, noise 

removal, digital signal conversion to analog, enhancing 

signals, etc. Filters play a significant role in the modern world, 

since the world is fundamentally analogous in nature. These 

filters can be designed with different approximations, since 

most of them are deterministic and sensitive to information 

about gradients. Numerical optimization techniques cannot 

offer ideal solutions. Meta heuristic algorithms can provide 

an opportunity to address these challenges. A Genetic 

Algorithm (GA) based optimization approach is presented in 

this paper for the optimization of the design parameters of 3rd 

order analog filters.       

Index Terms—Low pass filter, Genetic Algorithm, Sallen 

key filter 

I. INTRODUCTION 

ONVENTIONAL design methods for the 

determination of active analog filter component values 

require that some of the  component values be selected 

randomly. But it is not practicable as there are fewer 

mathematical expressions than the number of values of the 

component. Some of the passive parameters can be 

randomly chosen from easily accessible component values. 

But it is possible to determine other passive variables using 

well known mathematical expression. In addition, the 

calculated values may not match the steady values 

manufactured in the market that deteriorate the active 

filter's effectiveness. These results enhance demand for 

optimization algorithms to assess component values that 

are consistent with the components manufactured value.  

Realization of the operational amplifier creates low 

output impedance, high input impedance, arbitrary and 

virtually gain excluding inductors that decreases the issues 

associated with the inductor. Discrete parts like resistors 

and condensers are available in the market as E12, E24, 

E48, E96 and E192 series. They are produced by a defined 

quantity of continuous values in approximate logarithmic 

multiples. To match market values carefully, the choice of 

component values must be optimized without infringing 

design requirements including filter gain, cut-off frequency 

and quality factor. The best way to optimize component 

values is through intelligent search techniques. A 

considerable numbers of mythologies are available for 

designing the 4th order Butterworth filter and Butterworth 

filter.  Choice of component values needs to be optimized 

to carefully match market values without infringing design 

requirements including filter gain, quality factor and cut-

off frequency.  

Intelligent search techniques are the best way to 

optimize the component values. While implementing 

optimization algorithms and making the compatibility of 

the E-series, present literature [1-4] did not focus on the 

gain-restricted notion. Cascading other gain-regulated 

operating amplifier circuits offset the gain on such variable 

state filters. However, the gain value in the state variable 

filter depends on the quality factor, cutoff frequency and 

component values. If the optimization method is only 

implemented due to the cutoff frequency and quality factor, 

it will affect the gain value. Other operational amplifier 

cascade for gain compensation raises the noise element 

induced by the integrated semiconductors and resistors 

thereby affecting stability. Efforts were made to limit the 

state variable filter gain while implementing the 

optimization algorithms and maintaining them in line with 

the E-series [1-4]. The method of finite elements and 

Particle Swarm Optimization (PSO) were used to optimally 

model the filter [5]. The digital recurrent 2D filter has been 

designed using the Genetic Algorithm (GA) [6]. In 

literature, digital filter design was optimized by using PSO 

and Artificial Bee Colony (ABC) algorithms [7]. Passive 

filter element values are selected using tree representation 

methods based on GA and Genetic Programming (GP) [8] 

respectively.    

The parallel tabu search algorithm (TSA) was studied in 

order to design active filter component values compatible 

with the E12 series in [9]. In addition to the optimum filter 

circuit design, an improved ABC algorithm has been added 

[10]. An extensive comparative research with different 

C 

Manuscript received; Aug 30, 2019; accepted Oct 16, 2019. 

A. Shakoor (email: shakoor.tanoli@yahoo.com), S. Abbas (email: 

shafqatabbas043@gmail.com) and Z. Abbas (email: zahidabbas142@ 
gmail.com) are affiliated with National University of Science and 

Technology, College of Electrical and Mechanical Engineering, 

Rawalpindi, Punjab, Pakistan. 

Corresponding author email: shakoor.tanoli@yahoo.com  

mailto:shakoor.tanoli@yahoo.com
mailto:zahidabbas142@gmail.com
mailto:zahidabbas142@gmail.com
mailto:shakoor.tanoli@yahoo.com


UW Journal of Science and Technology Vol. 3 (2019) 55-60 

ISSN: 2523-0123 (Print) 2616-4396 (Online) 

Personal Use permitted, but republication/redistribution requires UW permission. 

56 
 

evolution methodologies on analog passive filter design is 

given in [11]. An automated framework was studied for 

passive analog circuit synthesis using GA [12]. An analog 

filter design [13] with unconstrained and limited low-pass 

LCR filter design has been discussed.  

The purpose of the Butterworth 4th order filter design is 

to use Grey Wolf Optimizer (GWO) and PSO to minimize 

and generate the E12 series compliant Gain Sensitivity 

Product (GSP) [14]. One of the biggest benefits of using 

EAs is that they can be comfortably linked to current 

models of simulation and integrated models of assessment. 

This can be accomplished in a straightforward way, 

requiring only two methods of integrating the optimization 

algorithm with the (current) simulation model. This makes 

it easier to compare alternatives produced by informal 

optimization with Expert Advisor (EA) optimization 

alternatives that can assist the users to trust the outcomes 

of optimization [15]. Algorithm values were acquired as 

part of informal optimization procedures using personal 

domain expertise, understanding and intuition with the 

assistance of developmental operators in the EA-based 

system, and these improvements in decision variable 

values are automatically acquired from one iteration to the 

next. Another advantage of EAs is that they usually operate 

with discrete and continuous variables of choice as 

opposed to most traditional techniques of optimization 

requiring ongoing mathematical methods to optimize 

variables of decision [16]. It benefits a large number of 

applications in the real world where there are either 

numerical decision variables or where practical 

considerations restrict continuous variables.  

Generally, EAs are suitable for parallel computing 

environment implementation. In order to accelerate the 

search, individual alternatives in the population can be 

assessed on various processors in parallel at each 

generation. This can lead in important time savings 

compared to most traditional techniques of optimization. 

As EAs operate with populations, they generate a quantity 

of near-perfect alternatives that can be comparable in 

objective function space, but in decision variable space 

quite distinct. This allows the final optimal solution to be 

selected to consider factors other than those captured in the 

optimization issue's mathematical formulation. Decision-

makers therefore have higher control over the use of their 

judgment and intuition to select the final solution from the 

optimization algorithm based on a number of suggested 

exceptional solutions [17]. While EAs have several 

benefits over numerical algorithms of optimization as they 

also pose a number of extra difficulties, particularly 

associated to computational effectiveness and search 

behavior adjustment.   

There are some computational effectiveness challenges 

with EAs because they work with alternative populations 

and generally create better alternatives over dozens or 

hundreds of iterations. The number of opportunities to 

calculate objective function and limit values is the result of 

population size and number of iterations. Applying EAs to 

complex problems in the real world can be of particular 

interest model in the order of minutes or even hours of 

runtime and search regions can be extremely large and 

require larger spaces. Considering uncertainties such as 

performance measures such as hazard, resilience, 

reliability, or robustness, computational difficulties are 

exacerbated [18].  

Meta-heuristic optimization algorithms are becoming 

more common in many fields due to a straightforward 

population-based notion, including engineering to 

minimize cost functions. Furthermore, these are easy to 

enforce, with the least likelihood of falling into perfect 

local information and thus not requiring gradient 

information. It can be categorized as methods based on 

evolution, physics and swarm. Most common optimization 

algorithms are Big Bang Big Crunch, GSA, System Search 

Charged, etc. The swarm based methods are the social 

behaviors inspired by nature of living beings. Some of 

examples of these methods are PSO, Monkey Search, 

ACO, Cuckoo Search, etc. [19].  

II. THEORETICAL BACKGROUND   

A. Genetic Algorithm     

Genetic algorithm is an intelligent optimization method 

based on natural evolution theory, a powerful global search 

capability in which the organism produces many offspring 

through random changes and crossover, but the offspring 

of each heritage property may be different from GA. The 

basic system is specifically designed to imitate the 

development process in the natural system for those who 

first follow Charles Darwin's principle of best practice. The 

survival probability is based on the wellbeing of the 

individual in which healthier individual is highly probable 

to survive [20].  The GA is used only when insensitive, 

extremely nonlinear, static or unmodified derivatives are 

the objective function. GA can provide alternatives to 

highly complicated search locations and perform well on 

all types of issues. The basic operators of GA are 

reproduction, crossover and mutation. GA's solution to an 

optimization problem begins with a population of 

population vector compromise of random strings. In 

general, the population size in GAs is fixed. To find its 

fitness value, each string is evaluated. To produce a new 

population, the population is operated by the reproduction, 

crossover and mutation of three operators. In order to find 

the fitness values, the new population is further evaluated 

and examined for process convergence.    

A cycle of evaluation of reproduction, crossover, 

mutation and fitness is known in GAs as generations. If the 

convergence criterion is not met, iteratively the three 

operators will operate the population and evaluate the 

fitness values of new generations. The method continues 

through various generations until the convergence criterion 

is met and the process is completed. The following steps of 

the GA can solve a optimization problem as discussed in 

[21] and also shown in Fig. 1.  

 

 Initialization: Generally speaking, GAs begin with an 

original population that is randomly generated using 

distinctive techniques to produce greater original 

population quality. Consequently, an approach is 



UW Journal of Science and Technology Vol. 3 (2019) 55-60 

ISSN: 2523-0123 (Print) 2616-4396 (Online) 

Personal Use permitted, but republication/redistribution requires UW permission. 

57 
 

intended to give the GA a healthy beginning and 

accelerate the process of evolution.  

 Selection: Depending on their fitness, it selects the 

two parent chromosome from a population, better the 

fitness then greater the chance to be selected.  

 Reproduction: It chooses the two chromosomes and 

crossover on them and gets one or two off springs, 

maybe apply mutation as well and insert the outcome 

back into that population, according to the present 

selection method.    

 Crossover: With a crossover probability, the parent 

will generate new offspring.   

 Mutation: This operator will be performed after a 

crossover. Mutation is a genetic operator used for 

maintaining genetic diversity from one generation of 

a chromosome population to the next.    

 Replacement: For a further run of algorithms, use 

new created population to further operate algorithms.  

   

 
 

B. Active Low Pass Filter    

In the circuit, active filter uses operational amplifier or 

transistor that takes power from the external power supply 

and boosts or amplifies the output signal. Amplification is 

the major distinction between the passive and active filter. 

In contrast to a passive high-pass filter with constant high-

frequency response in practice, an efficient filter's 

maximum frequency reaction is limited to the gain - 

bandwidth product (or open loop gain) of the operational 

amplifier. In specific, active filters are much easier to 

design than passive filters, creating exceptional 

performance characteristics, very excellent accuracy when 

used with a good circuit layout with steep roll-off and low 

noise. While this setup offers excellent stability for the 

filter, its primary drawback is that there is no above-one 

voltage gain.   

1) Active Low Pass Filter With Unity Gain     

It is discovered that in the passive low pass filter, output 

signal amplitude never exceeds the input signal gain. 

Active filter utilizes the circuit working amplifier or 

transistor that requires external power supply energy and 

boosts or amplifies the output signal as shown in Fig. 2. 

Amplification is the major distinction between the active 

passive filter and the active filter. In reality, contrary to a 

passive high-pass filter with an infinite high-frequency 

response, the peak frequency response of an effective filter 

is restricted to the operational amplifier's gain - bandwidth 

product (or open loop gain). Specifically, when used with 

a good circuit layout with steep roll-off and low noise, 

active filters are much simpler to design than passive 

filters, producing great quality characteristics, very nice 

accuracy, while this setup gives excellent stability to the 

filter, its primary drawback is that there is no increase in 

voltage above one. 

 
 

2) Active Low Pass Filter With Amplification  

The circuit's frequency response will be the same as the 

passive RC filter as shown in Fig. 3, except that by raising 

the amplifier's pass band [22], the output amplitude will be 

improved. 

C. Sallen-Key Low Pass Filter     

The passive component and operating amplifier's 

particular structure is known as the sallen-key filter, also 

known as the voltage control current source (VCCS). 

Sallen Key Filter design is often an active second order 

filter topology that can be used as the basic building blocks 

to perform high-order filter circuits such as low-pass 

(LPF), high-pass (HPF) and band-pass (BPF) filter circuits. 

It is the configuration that is most frequently used. One 

reason for this popularity is that from the filter output it 

demonstrates the least reliance on the op amp output. 

Unlike the integrator, the op-amp is regarded as the 

amplifier, which minimizes the need for bandwidth product 

to be achieved by the op amps. This enables us to create a 

higher frequency filter for designated op amps with other 

topologies that do not limit the effectiveness of the filter as 

it would be configured as an integrator by the op amps gain 

bandwidth product.  

Another benefit of Sallen-Key low pass filter is that the 

low value (component spread) is the proportion of the 

biggest resistor to the lowest resistor proportion and the 

ratio of the biggest condenser to the smallest. The Q term 

Fig. 1. Flow chart of Genetic Algorithm (GA). 

Fig. 2. Active low pass filter circuit diagram. 
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and frequency are somewhat autonomous, but both are 

extremely susceptible to the gain parameter. Using Sallen-

Key Filter designs has the benefit of being simple to 

execute and understand. Sallen-Key Topology is an active 

filter design based on a single operating amplifier and two 

resistors, creating a voltage-controlled voltage source 

(VCVS) design with filter characteristics, high input 

impedance, low output impedance and good stability, 

allowing the cascading of individual Sallen-Key filter 

sections to produce much higher order. 

 

 

III. RESULTS AND ANALYSIS 

A. Modelling of 3rd Order Sallen-Key Filter   

In this research paper genetic optimization algorithm is 

used to optimize the Sallen key 3rd order low pass active 

filter. Which is considered an optimization problem as 

shown in Fig. 4. It is developed by cascading the low-pass 

filter of the first order with the low-pass filter of the second 

order. 

 

The transfer function of the first order low pass filter is 

given by the equation (1), 

                   32

in 1 1 2

RV 1
= 1+

V sR C +1 R

  
  
  

              (1)                                                                          

Similarly the transfer function of the 2nd order Sallen 

key filter is given by the equation (2), 

     
 

2 2 5 5

3 2 4 2 4 2 5 3

out

in
2

1
R C R CV

=
V

1 1 1s +s + +
R C R C R C R C

 
  
 

   (2) 

So the overall transfer function is multiplication of the 

two functions as given by the equation (3), 

 

      out out 2

in 2 in

V V V
= ×

V V V
                         (3)         

B. Optimization of the Parameters of 3rd Order Sallen 

Key Filter      

    The above discussed cascaded Sallen key low pass 

filter is optimized using GA. Optimization algorithm 

selects the parameters of the filter in such a way that 

objective function is optimized. As problem is multi 

objective optimization, so there are two objective 

functions. One is related with gain and other is linked with 

cut off frequency, fc.  

In order to maximize both gain and cut off frequency, 

GA algorithm selects the input parameters in such a way 

that final objective function is optimized. The developed 

optimization algorithm chooses the seven input parameters 

Resistors: R1, R2, R3, R4, R5 and capacitors: C1, C2.  All 

these parameters are selected by optimization algorithm, 

whereas Gain and cut-off frequency is calculated from 

transfer function of the filter.  

Objective of the research work is to optimize the overall 

fitness of the filter. There are three fitness functions: gain, 

cut-off frequency and overall fitness function. The fitness 

function of the gain is calculated as given by equation (4) 

 

            1

5 + (gain -12);gain > 12

F = 5 + (8- gain);gain < 8

(12 - gain);8 < gain < 12

 
 
 
 
 

  (4) 

 

Similarly fitness function of the cutoff frequency is 

given by equation (5). 
 

       2

40 + (f -1800);f > 1800c c

F = 40 + (1500 - f );f < 1500c c

(1800 - f );1500 < f < 1800c c

 
 
 
 
 

   (5) 

 

The overall fitness function is weighted sum of the F1 

and F2 given by the equation (6). 

 

      1 2

1avg 2avg

F F
F = +

F F
                              (6) 

Where, 

F1avg is the average value of F1 which is nearly round 

about 4 and similarly F2avg is the average value of F2, which 

is nearly round about 50. 

The GA is used to optimize the cascaded low pass active 

filter, whereas GA toolbox of MATLABTM is used for 

Fig. 3. Active low Pass filter with amplification. 

Fig. 4. Sallen key 3rd order low pass active filter. 
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optimization. Main code for optimization using GA 

toolbox is given below: 

 

 

 

 

 

fun = @GA_analysis;

N = 7;var

3 3 3 3 9 9
L = 10e 800 1e 1e 1e 5e 100e

b

3 3 3 3 3 9 9
U = 50e 2e 2e 10e 3e 50e 500e

b

A =

B =

A =eq

B =eq

X = ga(fun, 7, A, B, A , B , L , U )eq eq b b

 



 
 

 
 

 

where: “fun” is points toward the objective function.    

The objective function is calculated in the 

“GA_analysis” function. “Nvar” indicates the dimension of 

the input variables. Optimization problem stated in the 

research work is 7D problem, because there are 7 selection 

parameters: 5 resistors and 2 capacitors. Lb and Ub indicate 

the lower and upper bounds of the input parameters 

respectively listed in Table I. As there is no equality and 

non-equality constraints, hence constrained parameters are 

declared as null.   

TABLE I 
UPPER AND LOWER BOUND OF DESIGNED PARAMETERS  

Parameters Min. value Max. value 

R1 10 KΩ 50 KΩ 

R2 800 Ω 2 KΩ 

R3 1 KΩ 2 KΩ 

R3 1 KΩ 10 KΩ 

R5 1 KΩ 3 KΩ 

C1 5 nF 50 nF 

C2 50 nF 500 nF 

 

C. Pseudo Code of Moga for 3rd Order Low Pass Filter 

Design   

 Initialization of different parameters of MOGA 

and Low Pass Filter.   

 Generation of initial population randomly in 

search space.   

 Run MATLAB simulation to evaluate the fitness 

of initial population.   

 Design Point Update: The design points of 3rd 

order low pass filter are being updated in the new 

population.    

 Fitness evaluation for each chromosome and 

Convergence validation   

              Yes: Final selection/Best solution   

No: Optimization not converged, the process 

continues to the next (Crossover and Mutation).    

 Stop Criteria Validation: If the optimization has 

not converged, it will be validated to satisfy the 

stop criteria.    

Yes: Stop Criteria Met The process is stopped 

without convergence when the maximum number 

of iterations criteria is met.    

No: Stop Criteria Not met unless the stop criteria 

have been met, the MOGA will again be used to 

generate a new population (return).   

From step 2 to 5 are repeated sequentially until 

optimization converges or the criteria for stopping are met 

as shown in Fig. 5.  

D. Results 

The problem is optimized by using the given bounds and 

transfer function of the “Low pass filter”.  Simulation 

shows that Gain and cut-off frequency are optimized to 12 

dB and 1800 Hz respectively. The value of input 

parameters, which optimized the solution, are given in the 

Table II. The bode plot of the transfer function is plotted 

with above given optimized parameters as shown in Fig. 6. 

The bode plot shows the 3-dB cut-off frequency of 1.8K 

and gain of 12 dB.   

 
TABLE II 

OPTIMAL PARAMETERS 

Parameters Optimal value 

R1 13.32 KΩ 

R2 1.84 KΩ 

R3 1.51 KΩ 

R3 8.75 KΩ 

R5 2.7 KΩ 

C1 16.8 nF 

C2 495 nF 

       

 Fig. 5. Illustration of MOGA for 3rd order low pass filter design. 
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IV. CONCLUSION 

Sallen-key type 3rd order low pass active filter is 

optimized using GA. Transfer function is used to find the 

gain and cut-off frequency, which are optimized using GA 

toolbox in MATLABTM by designing the seven (7) selection 

parameters: five (5) resistors and two (2) capacitors. Gain 

and cut-off frequency are optimized to 12dB and 1800 Hz 

respectively. Results shows that presented optimization 

procedure can be used to design any type of active filters 

and can optimize multi-objective function by implementing 

different constraints.   
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