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 Abstract— This research article presents soliton solutions of 
Variant Boussinesq equations. The Boussinesq equation governs 
the dynamics of shallow water waves that are seen in various 
places like sea beaches, lakes and rivers. By a suitable 
transformation the nonlinear partial differential equation is 
converted into nonlinear ordinary differential equation. The exp-
function method is applied to solve the mathematical problem. 
The novel type results based on the solitary wave structures 
contributes a lot in the regime of nonlinear wave phenomena. It is 
observed that scheme is highly trustworthy and may be extended 
to other nonlinear models represented in the form of highly 
nonlinear differential equations.           

 
Index Terms— Soliton solutions, Exp-function technique, 

Variant Boussinesq equations, Maple 18.  

I. INTRODUCTION 

ARGE assortments of physical, chemical and biological 
singularities are ruled by nonlinear partial differential 

equations. One of the most stimulating progresses of nonlinear 
sciences and mathematical physics has been the development 
of methods to look for exact solutions of nonlinear partial 
differential equations. Exact solutions to nonlinear partial 
differential equations play a vital role in nonlinear sciences, 
especially in nonlinear physical sciences. Since they can 
provide much physical information and more understanding 
into the physical features of the problem, they lead to further 
applications.  
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The rapid development of nonlinear sciences looks over a 
wide range of trustworthy and well-organized techniques 
which are of great help in tackling physical problems even of 
highly complicated nature. After the observation of solitary 
phenomena by John Scott Russell [1] in 1844 and the 
Korteweg-de Vries (KdV) equation was solved by Gardner et 
al. [2] by the inverse scattering method, finding the exact 
solutions of nonlinear evolution equations (NLEEs) has turned 
out to be one of the most stirring areas of research. The 
solitary wave solutions appear commonly in nature; kink-
shaped tanh-solutions and bell-shaped sech-solutions, models 
the wave phenomena in elastic media, plasmas, solid state 
physics, condensed matter physics, electrical circuits, optical 
fibers, chemical kinematics, fluids, bio-genetics etc. In 
renowned example, traveling wave solutions are obtained by 
KdV equation that describes water waves. Many different 
methods are used for the exact solutions of these equations. 
Aside from their physical bearing, if the closed-form solutions 
of NLEEs are available, it facilitates the numerical solvers in 
comparison, and assist in the stability analysis. In soliton 
theory, many methods and techniques are available to deal 
with the problem for finding solitary wave solutions for 
NLEEs such as the Backlund transformation method [3], the 
variational iteration method [4], the homogeneous balance 
method, the tanh-function method [5-7],  the F-expansion 
method], the first integration method, the exp-function method 
[8], the truncated Painleve expansion method, the Weierstrass 
elliptic function method [9] and the Jacobi elliptic function 
expansion method. For integrateable nonlinear differential 
equations [10], the inverse scattering transform method [11] 
and the Hirota method [12] are used for searching the exact 
solutions. Some other systematical solution approaches 
include, the invariant subspace method [13]. The expansion 
around solutions to a Riccati equation is discussed in [14]. 
Recent results on exact solutions and integral transform 
methods are presented in [15-20].    

The manuscript constructs exact traveling wave solutions to 
a nonlinear Boussinesq equation. Exp-function methods are 
special cases of the transformed rational function method [21], 
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or more generally the multiple exp-function expansion method 
[22-23]. The transformed rational function method delivers a 
more systematical and appropriate treatment of the soliton 
solution process, unifying the tanh-function method, the sech-
function method, the homogeneous balance method, the 
extended tanh-function method, the sine–cosine method, the 
coth- function method, the Jacobi elliptic function method, the 
exp-function method, the F-expansion type method, the 
mapping method and the extended F-expansion method. Its 
significant point is to hunt for rational solutions based upon 
rational function transformations. Based on Backlund 
transformation theory and the Fourier theory, modified and 
improved modified exp-function techniques are the most 
general methods, in the literature so far, in generating 
travelling wave solutions and multiple wave solutions 
respectively. That means that all traveling wave solutions 
could be presented by the transformed rational function 
method and all multiple wave solutions such as N-soliton 
solutions could be presented by the multiple exp-function 
method, which also generalizes the exp-function method. A 
direct search for exact solutions to the nonlinear differential 
equation is made under the same expansion idea [24]. Solitary 
wave solutions could be generated by the Hirota bilinear 
method and generalized bilinear techniques [25]. The 
subsequent works [26-34] have shown the complete reliability 
and efficiency of the algorithms. 

 The basic motivation of this paper is the extension of the 
applications of exp-function methods [35-37] for the solutions 
of nonlinear Boussinesq equation by finding the solitary and 
periodic solutions. In 1872 paper of Boussinesq had 
introduced the equations now known as the Boussinesq 
equations. This equation has many physical applications like 
analysis of long shallow water waves and percolation of water 
in porous surface. In fluid dynamics, the Boussinesq  
approximation for water waves is an approximation valid for 
weakly non-linear and fairly long waves. The approximation is 
named after Joseph Boussinesq, who first derived them in 
response to the observation by John Scott Russell of the wave 
of translation also known as solitary wave or soliton. The 
dynamics of shallow water waves, that are seen in various 
places like sea beaches, lakes and rivers, are governed by the 
Boussinesq Equation (BE). The Korteweg–deVries (KdV) 
equation that models shallow water waves is definitely very 
well known. However, the BE gives a much better 
approximation to such waves. There are two forms of the 
Boussinesq Equation BE, and both are with cubic nonlinearity. 
The soliton solutions will be extremely useful in carrying out 
further analysis in the context of shallow water waves that 
arises in the context of oceanography.  

The soliton solution method under study is quite compatible 
and user friendly for such nonlinear problems. Analytical 
results are very boosting. The solution procedure of this 
technique is quite simple, explicit, and easily be extended to 
all types of NLEEs [38-40]. Proposed technique is divided in 

different parts. In next section, analysis of method used to 
attain soliton wave solutions is presented. Third section is 
devoted to application of exp-function technique. Results and 
their discussion are given in section IV to draw some 
conclusions. 

II. ANALYSIS OF TECHNIQUE    

Consider the general nonlinear partial differential equation of 
the type:  
 

.0.....),,,,,(  yyxxyxtP                            (1)                   

Invoking a transformation: 
 

.tnzmykx                                           (2)                    

 
In above mentioned transformation .0., m     

Partial differential equation (1) changed into ODE given as: 
 

.0,.....),,,(   Q                                  (3)                    

 
Dash on indicates derivative with respect to  in above 

equation.  
 
The assumed soliton wave solution in exp-function technique: 
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Where ser ,,  and f are the positive integers,  ia and jb are 

constants.  Equation (4) can be rewritten in the form as below. 
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The outcome of equation (5) leads to solitary wave solutions 
of the model equation. Calculating values by using [25], 
finally results in    ., fser                     (6)                   

III. SOLUTION PROCEDURE 

Consider the Variant Boussinesq equations 

,0 yyt  

  .0 yyyyt                (7) 
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Using equation (2) Variant Boussinesq equation can be 
converted to an ordinary differential equation: 

,0 mm                    (8)                                                                                                        

  .03   mm                      (9)                                                                                                  

Integrating equation (8) 
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In above equation 1c  is integration constant. 

 
Substituting value from equation (10) into equation (9) yields: 
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Soliton solution of Variant Boussinesq equation is in the form 
of equation (4).  

 
The final soliton solutions does not depend on selection of 

values of fe,  and sr, . 

Case I: In first case take 1 er and 1 fs . 
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Substituting equation (12) into equation (11), we have 
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Where 5
101 ))exp()exp((   bbbA , and ie  can 

be obtained with the help of Maple 18. Putting coefficients of 
)exp( i equal to zero:    
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Soliton solutions satisfying Variant Boussinesq equations are 
given below.      
 
 
1st Solution set:    
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The solitary solution  ty, is given as 
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Fig. 1: Soliton solution for a1=1, b-1=1, a-1=1, Ω=2, m=1. 

 
 
2nd Solution set: 
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Soliton solution  ty, is in the following form 
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Fig. 2. Soliton solution for b0=1, b1=1, a0=1, b-1=1, Ω, m=1. 

 
 
  

3rd Solution set: 
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Therefore solitary wave solution  ty, given below 
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Fig. 3.  Soliton solution for b0=1, a1=1, a0=1, Ω=1, m=1 

   
Case II.  In this case take 2 er and 1 fs , the trial 

solution takes the form:  
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1st Solution set: 
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Therefore attained solution  ty,  can be written as: 
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Fig. 4.  Soliton solution for b0=1, b1=1, a1=1, b-1=1, Ω=1, m=1 

   
2nd Solution set: 
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 Hence the solitary solution  ty,  can be written as: 
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Fig. 5. Soliton solution for b0=1, b-1=1, b1=1, b2=1, a2=1, Ω=1, m=1. 

 
 

3rd Solution set: 
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The obtained generalized solitary solution  ty,  is given as
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Fig.  6. Soliton solution for a0=1, b1=1, a1=1, Ω=1, m=1. 

IV. RESULTS AND DISCUSSION 

The soliton wave formation by solving nonlinear Variant 
Boussinesq equations has been examined via a novel 
analytical technique, exp -function method. The findings are 

mentioned and discussed as follows.  
A soliton is a solitary wave which promulgate deprived of 

variation in shape. The cause of arising soliton is the indirect 
balance among dispersive and nonlinear effects. Soliton wave 
amplitudes and velocities are handled by different factors. 
Figures indicates graphical solutions for altered values of 
parameters. Figures depict graphical representation of 
nonlinear Variant Boussinesq equations for mentioned values 
of parameters. Since solitary wave solutions be influenced by 
arbitrary functions. So it is concluded, different constraints 
can be selected as input to our simulations.  The graphical 
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representations in Figs. (1-6) signifies solitary waves for 
various values of parameters. In both cases it is observed that 
soliton wave solutions does not strongly depends on values of 
parameters, and equivalent solitary wave’s solutions are 
attained. 

 

V.   CONCLUSIONS 

In this paper, novel soliton wave formation of Variant 
Boussinesq equations is developed. It is observed that 
nonlinear differential equations permit soliton type solutions. 
The applied algorithm is very beneficial to validate the results 
attained by the exact solution. The intimacy among the 
outcomes reveals that it is a powerful tool for solving 
differential equations. In solitary wave theory, Variant 
Boussinesq equations has a significant role as it discloses 
soliton wave solutions of various nature, and exp-function 
technique is a decent and reliable tool to handhold these 
equations. It is concluded that proposed method is an efficient 
technique to check the physical behavior of solitary waves 
analytically. Moreover, exp-function method has wide 
applications due to less computational work. This scheme is 
capable and effective for estimating solitary wave solutions of 
nonlinear mathematical models. The attained results show that 
the developed technique is very inspiring and trustworthy for 
handling different classes of non-linear evolutions equations. 
The graphical results also show the soliton waves of various 
types.  
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