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Abstract—Using pyro-sensors, machine learning (ML) 

methods, and artificial intelligence, this suggested study 

enlightens an idea to monitor current in high voltage 

transmission lines. Data can be collected in the form of heat 

waves (infrared waves) created by the electric current in the 

transmission/distribution line using pyro-sensors installed 

around the transmission/distribution lines. The suggested 

approach processes this data using a neural network-based 

artificial intelligence algorithm to determine the transmission 

line's current. MATLAB simulation neural network toolkit is 

used to test and validate the suggested technique's validity 

with backward forwarding propagation (FFBP) type and 

with feed-forward distributed time delay (FFDTD) and 

compare it to get the best validation performance for the 

proposed approach. It is validated that feed-forward 

distributed time delay (FFDTD) gives the best validation 

performance (0.98256) at epoch 0 as compared to the 

forward, backward propagation (FFBP), which offers the 

best validation performance at (1.984), it means validation 

performance of FFDTD is better than FFBP. It also tells us 

that these simulation findings compare projected current to 

actual current, implying that the existing CT current 

measuring technology at the grid station may be replaced. 

 

Index Terms — Pyro-sensors, Artificial Intelligence, 

Current transformer, Machine learning, Potential 

transformer. 

I. INTRODUCTION 

HE community's ever-increasing need for electric 

power supply necessitates concerted measures to 

maintain grid stations operational around the clock. The 

frequency, current, and phase of high-voltage power lines 

are critical indicators of power transmission quality.  
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As a result, it is critical to continually create and send these 

values through high power transmission lines. It is also 

critical to monitor the real-time quality of electricity 

transferred via high-voltage transmission lines located 

distant from power plants and substations. No intelligent 

technology is available to assess power line quality in any 

distant site [1], [2]. The typical measuring technique 

comprises a contact current transformer (CT) at the end of 

a transmission line [3]; however, CT cannot measure 

power quality or other characteristics at a specific point in 

high voltage transmission lines. Furthermore, the contact 

measuring method has numerous safety and electrical 

damage issues due to the electromagnetic fields produced 

on the conductors. Noncontact measuring techniques are 

used to measure the current, voltage, and frequency of 

high-power lines, and when discussing noncontact 

measurement phenomena, temperature measurement 

techniques appear to be very trustworthy since they are 

extensively employed in a variety of applications in recent 

days. Several temperature measuring techniques are 

mentioned below. 

Temperature is the most common and important 

physical property that is measured. As a result, sensor 

usage has a wide variety of applications and accounts for a 

sizable portion of the sensor market in terms of volume [4]. 

Multiple physical elements being detected and quantified 

(e.g., humidity, pressure, motion, body temperature, flow, 

stress, and gas concentration) revolve around temperature 

swings, therefore temperature changes must be 

compensated [5]. Several temperature sensing methods, 

such as thermal expansion [6], thermoelectricity [7], 

fluorescence [8], and others, are in use and are based on 

vivid physical phenomena. 

Temperature measuring techniques are classified into 

three types based on their relative location in relation to the 

environment [6]. I Invasive: When the sensor is in direct 

contact with the medium of interest (for example, a 

thermocouple in a gas stream), ii) Semi-Invasive: In some 
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systems, the medium of interest behaves to produce remote 

outputs (for example, surface coatings whose colour 

changes with temperature), iii) Non-Invasive: The medium 

of interest is monitored remotely (e.g., IR thermography). 

Because a non-contact (non-invasive) temperature 

measuring technique employs an infrared (IR) sensor, it is 

necessary to explain remote monitoring IR technology 

before proceeding. Since the discovery of the invisible 

spectrum, the use of infrared sensors has skyrocketed. The 

invisible spectrum is not visible to the naked eye, but it may 

be detected by the amount of heat emitted by the light.  

Thermal sensors/IR thermometers are becoming 

increasingly important in order to see and explain this 

invisible spectrum. Radiation thermometers detect the heat 

radiation emitted from a material's surface. The infrared 

ray is a longer wavelength electromagnetic wave. The 

wavelength of infrared radiation ranges from 0.75m to 1m 

[9]. When compared to its absolute temperature ratings, all 

matter emits thermal radiation or heat energy [10]. Spans 

from gamma rays to microwaves with wavelengths ranging 

from 10-12m to hundreds of meters, encompassing x rays, 

UV rays, visible spectrum, and infrared waves in between 

two extremes. Such critical information is required to 

comprehend the impetus for replacing present voltage 

measurement technology PTs with the IR temperature 

sensor. But first, let's look at some of the disadvantages of 

utilizing PTs at grid stations. 

Overhead transmission cables must be monitored to 

ensure a continuous power supply across vast distances. 

Fault occurrence is likely in overhead transmission lines, 

which might produce sudden changes in voltage and 

frequency amplitude [11]. In addition, specific renewable 

energy sources may produce power variations and voltage 

changes [12]. Furthermore, sectional monitoring is 

required for these high-power transmission lines since they 

cover a vast geographical region and are subjected to a 

variety of environmental conditions. For example, if an 

event occurs at a specific place, remedial actions such as 

disconnecting and reconnecting should be performed as 

soon as possible to alleviate the cause. Large frequency 

bandwidth should also be addressed, as it is a fundamental 

need of newly built high-voltage DC transmission grids 

[13]. Furthermore, traditional potential transformers (PT) 

cannot fulfil these measurement criteria [14] because 

magnetic core problems in PTs limit the frequency 

bandwidth in the tens of Hz to kHz range. Given the high 

cost of PTs' ferromagnetic material and the required 

galvanic connection to high-voltage live wires, PTs are 

unlikely to be deployable to cover broad geographical areas 

for divisional monitoring. To discover an inexpensive and 

effective solution, researchers are looking for new avenues 

of current and voltage measurements, like as: 

• Numerous academic attempts are being 

undertaken to build a smart system for monitoring 

the power for overhead transmission lines from 

any remote place [10]. 

• One study [15] is presented in the literature that 

emphasizes the capability of microprocessors for 

data collecting and processing based on hall 

sensing theory. 

• In the literature [16], a noncontact measuring 

system is designed using a CT voltage sensor and 

wireless transmission technology.  

• Another approach described in [17] is the use of 

capacitive coupling with magnetic field sensing to 

detect non-contact voltages of overhead 

transmission lines that cover a broad geographical 

region. 

The use of infrared sensors has skyrocketed since the 

discovery of the invisible spectrum. The invisible spectrum 

is not visible to the naked eye, but it may be detected by 

the amount of heat produced by light. Thermal sensors/IR 

thermometers are becoming increasingly important for 

seeing and communicating this unseen spectrum. Radiation 

thermometers detect the heat radiation emitted by a 

material's surface. The infrared ray is an electromagnetic 

wave with a longer wavelength. The wavelength of 

infrared light ranges from 0.75m to 1m [9]. Every 

substance emits thermal radiation or heat energy in 

proportion to its absolute temperature [10]. The suggested 

study's blueprint includes a PIR (pyroelectric infrared) 

detecting module, which serves as the proposed system's 

backbone and is linked to a high-power transmission line 

above. The suggested heatwave measurement system is 

depicted in Fig. 1, and the component details are discussed 

further below. At non-zero temperatures, all matter emits 

radiation, some visible and some invisible, such as 

ultraviolet UV rays and infrared IR. 

 

 
Fig. 1. Proposed structure of heat-wave measurement system, it shows 
that the temperature sensor detects heat waves emitted by above power 

lines. The optimum distance between the IR sensor and the measuring 
item is determined by the IR temperature sensor standard. This 

measurement values will then be transmitted to an analogue to digital 

converter, which will then transmit digital output to an artificial 
intelligent network. 

II. HEAT WAVES OR THERMAL RADIATION 

The wavelength range of thermal radiation of heat waves 

produced by all stuff at zero temperature is 0.1 m to 100 m. 

Fig. 2, depicts several areas of the electromagnetic 

spectrum, as well as the ranges of each zone. The 

phenomenon of generating radiation from matter is caused 

by collisions of matter electrons, which release energy. 

Because thermal radiations are likewise electromagnetic, 
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the propagation characteristics of electromagnetic waves 

may be applied to them [18], [19]. The relationship 

between frequency and wavelength of thermal radiations 

may be expressed as =c/v, where c is the speed of light, 

2.998108 m/s. 

 
Fig. 2. Electromagnetic Spectrum (XR X-rays; GR gamma rays; UV 

ultraviolet; MW microwaves; IR infrared; VI visible; TR thermal 

radiation;). It also shows depicts several areas of the electromagnetic 
spectrum, as well as the ranges of each zone. 

 

III. TEMPERATURE MEASUREMENT SYSTEM 

DESIGN 

The heat radiations released are non-directed and can be 

transferred in all directions of the conductor. An infrared 

temperature sensor can be installed here to record and 

analyse the emitted radiations from the high-power 

transmission lines to monitor current, voltage, and 

frequency. The IR temperature sensor is explained more 

below. Given the length of the insulators normally attached 

to the tower, the minimum distance should be about 1cm, 

and the spot size at that distance should not be larger than 

3 cm given the size of the attached sphere. The minimum 

temperature for the transmission conductor depends on the 

material used, but it is common to specify the temperature 

range of the conductor from 50 C to 70 C as the maximum 

operating temperature so that the required temperature 

range could vary from a few degrees Celsius to nearly one 

hundred Celsius depending on the weather conditions, cold 

or hot. 

The heatwave measuring system is made up of two 

major components: an infrared thermometer and a 

nonconducting shell in which the pyro-sensor is inserted to 

achieve a non-contact system [20]. To select the 

thermometer, three factors were available: cost, spot size, 

and, most significantly, temperature range. 

Price was also a significant and essential factor in 

creating and implementing this concept in order to create a 

viable alternative to existing contact temperature 

monitoring devices, which cost several thousand dollars. 

Fig. 3, depicts a simplified block diagram of a non-contact 

temperature measurement sensor. The power line 

temperature is determined by the quantity of heat generated 

by the high transmission lines. At room temperature, there 

will be relatively few photons released from the surface of 

the transmission line, and the number of photons emitted 

will stay low until the temperature of the surface exceeds a 

particular threshold value. Once the conductor's surface is 

heated enough to break the threshold point, an excess of 

photons will be released from the conductor, generating a 

noticeable number of heatwaves for the IR sensor. 

 
Fig. 3. Temperature Sensor Block diagram. It shows a simplified block 

diagram of a non-contact temperature measurement sensor with many 
connected blocks are explained below. 

 

Since heat is a kind of energy (E) and assuming the 

conductor current, resistance, and length of time the current 

flows through the conductor are known, the quantity of 

heat may be estimated as follows: 

           𝑃 =  𝑊/𝑡 =>  𝐸/𝑡     (1)  

            𝐸 =  𝑃𝑡 =>  𝐼2𝑅𝑡     (2)  

        𝐻 =  𝐼2𝑅𝑡     (3) 

Now, in order to elaborate on the suggested current 

measurement approach, the following key components of 

the heatwave measuring device are described in detail: 

 

A. Thermopile Sensor (81101) 

The non-contact temperature sensor 81101 was chosen 

as the infrared sensor for this investigation. It may be used 

to measure component temperatures and body temperature, 

surface temperature, heat ventilation, and much more. This 

IR sensor has a temperature range of 40°C to 125°C, a 

spectral range of 8 m to 14 m, and a measurement 

resolution of 0.02°C. 

This non-contact temperature measurement sensor 

operates on the thermocouple concept, in which heat waves 

from high-power transmission lines are detected and 

transformed to electrical signals for further processing. The 

thermopile sensors are made using several polysilicon 

technologies [21], [22], as well as Bi-Sb-Te [23]. 

 

B. Amplifier 

The goal is to enhance the signal received from the IR 

sensor, which may be quite faint in reality. As previously 

stated, Plank's law may represent thermal radiation emitted 

by heated surfaces, which states that radiance rises 

exponentially with (absolute) temperature. To maximize 

the gain of the recorded heatwave signal, a band-pass 

amplifier with a total gain of 1000 might be employed. 

Furthermore, the amplifier must be quick (high 

bandwidth), low-noise, linear, and capable of performing 

across a wide dynamic range [24][25]. The boosted signal 

is then supplied into an A/D converter. iii). A/D Converter 

 

C. A/D Converter 

The three fundamental processes for converting an 

analog signal to a digital signal are sampling, quantization, 
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and coding. The nature of the signal changes after going 

through the A/D converter since our ultimate aim is 

additional digital signal processing at the neural network 

end to estimate the current and voltage values of the high-

power transmission.  

The equation to compute the output for a single layer 

ANN network with three inputs (x1, x2, and x3) and three 

weights (w1, w2, and w3) and a bias (b) related to 

information storage may be seen in Fig. 4. lines. A state 

machine governs the functioning of the temperature sensor, 

which regulates the measurement and determines the 

object's air temperature. PWM then outputs this post-

processing of the measured temperature. The following is 

a brief description of the sensor components of 

temperature. 

 
Fig. 4. Single layer Artificial neural network architecture. It computes 

the output for a single layer ANN network with three inputs (x1, x2, and 
x3) and three weights (w1, w2, and w3) and a bias (b) related to 

information storage. 
 

IV. ARTIFICIAL NEURAL NETWORK (ANN) 

The discovery of a neuron in the human brain throughout 

the nineteenth century opened up new avenues for 

scientists and researchers to investigate the phenomenon. 

This biological discovery also transformed the electronics 

sector, and artificial neural networks (ANN) research is 

eerily similar to human neurons. It is estimated that the 

human brain has around 85 billion neurons [26], and ANN 

functions in a way similar to that of the human brain. 

Different neurons in an ANN network are linked together 

by weights. 

ANN networks are remarkable in their ability to forecast 

or estimate system values and learn and emphasize the 

correlation between system parameters. The workings of 

ANN are described in detail in the literature [27].  

 

 
Fig. 5. Single artificial neural network (ANN) node. A typical ANN 

network architecture includes many layers and nodes. Depending on the 

needs of the operation, ANN systems can be single or multilayer. The 

element that can gather information and conduct simple actions is the 
node, which mimics organic neurons. This information is then 

distributed to various neurons/nodes. The activation value of each node 

is its output.   

Fig. 5 depicts a single-layer ANN system with several 

nodes. 

𝑜 = (𝑤1 ∗ 𝑥1)  +  (𝑤2 ∗ 𝑥2)  +  (𝑤3 ∗ 𝑥3)  +  𝑏     (4) 

From (4), w = [𝑤1 𝑤2 𝑤3] and x = [𝑥1 𝑥2 𝑥3] Where is 

an activation function; thus the output of a neural network 

node may be represented as and can be seen in Fig. 5:  

  𝑦 =  𝜑 (𝑜) =  𝜑 (𝑤𝑥 +  𝑏)        (5) 

where o = (𝑤𝑥 +  𝑏)  and is a typical step or linear 

function, known as the activation function for an ANN 

system, that affects the behaviour of a node. This transfer 

function, which is based on the input and output layers, also 

indicates the system's predicted output. Whereas bias (b) is 

an offset of a neuron's threshold value and is frequently 

envisioned as a feature of the activation function. 

 

 
 

Fig. 6. Multiple Unit Activation Functions. Fig. 6 (a), Fig 6 (b) The 

linear activation function is simpler to comprehend, but it can only be 
used for a single layer neural network as (x) = x, as illustrated in Fig. 6 

(a). Whereas bias (b) is an offset of a neuron's threshold value and is 

frequently envisioned as a feature of the activation function. 

 

There are two types of activation functions used: linear 

and sigmoid. The linear activation function is simpler to 

comprehend, but it can only be used for a single layer 

neural network as (x) = x, as illustrated in Fig. 6 (a), 

because all hidden layers become useless for this function.  

The bias value serves as a reference point against which 

the inputs may be evaluated in order to create output. If the 

input values are less than the biased value, the sigmoid 

function is used.  

The sigmoid function, shown in Fig. 6 (b), is a smooth 

limiting function with the mathematical representation:  

  𝑓 (𝑥)  =  1/ (1 −  𝑒𝑥𝑝 − 𝑥)   (6) 

 

A. Feed forward Back Prop (FFBP) Testing 

A rapid feed forward-backwards propagation (FFBP) 

type is utilized for training a neural network for incoming 

data to anticipate an approximated output. The training of 

a neural network is based on splitting the data (voltage or 

current waves from PWM) into three sets: the training set, 

the validating set, and the testing set, which are used to test 

the efficiency of neural networks. Using the MATLAB 

Neural Network toolbox [28], such dynamic artificial 

neural networks may be converted to open or closed-loop 
Figure 7. Open-loop neural network progress validation (FFBP) 
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networks. Fig. 7, depicts a block schematic of the system 

with progress validation.  

The neural network was trained using the Levenberg 

Marquardt backpropagation method. Although it requires 

more memory than other algorithms (for example, 

Bayesian Regulation and Scaled Conjugate Radiant), it has 

high performance and is quick for training. The training 

function's divider and argument are used to split the data 

samples.  

 

 
Fig. 7. Open-loop neural network progress validation (FFBP). Using 

the open-loop and closed-loop functions in the MATLAB Neural 

Network toolbox [28], such dynamic artificial neural networks may be 
converted to open or closed-loop networks. 

 

As a result, 70% of the data samples are utilized for 

training, 15% for validation, and the remaining 15% are 

used to compare the output of the trained neural network to 

the actual output values. The forecasts' results are in close 

proximity to the original data collected from the power 

lines. Fig. 8, depicts the training performance and 

prediction results for N=100 samples using MATLAB. 

Four input values are used: maximum conductor 

temperature, minimum conductor temperature, output 

voltage or external ambient temperature, and noise. Fig. 9 

(a) displays the best validation performance (1.984) at 0 

epochs, while Fig. 9(b), shows the regression values, 

indicating how effectively the neural network is trained as 

the Training R-value is almost equal to 1. Fig. 9(c) shows 

the validation checking of the given test.  

Fig. 9(d), depicts the overlapping signals of real and 

anticipated data. (e) displaying the relatively low error 

signal between the actual and projected data, arguing for 

the system's efficiency in producing expected output.  

 

B. Feed forward distributed time delay (FFDTD) 

Testing 

 

A feed forward distributed time delay (FFDTD) is also 

utilized for training a neural network for incoming data to 

anticipate an approximated best required output again. The 

training of this neural network is also based on three sets: 

the training set, the validating set, and the testing set, which 

are used to test the better efficiency of neural networks. 

Using the open-loop and closed-loop functions in the 

MATLAB Neural Network toolbox [28], such dynamic 

artificial neural networks may also be converted to open or 

closed-loop networks.  

 

 
Fig. 8. Open-loop neural network progress validation (FFDTD). Using 

the open-loop and closed-loop functions in the MATLAB Neural 

Network toolbox [28], such dynamic artificial neural networks may be 
converted to open or closed-loop networks. 

This neural network was also trained using the 

Levenberg Marquardt backpropagation method. Although 

it requires more memory than other algorithms (for 

example, Bayesian Regulation and Scaled Conjugate 

Radiant), it has high performance and is quick for training. 

The training function's divider and argument are used to 

split the data samples. Fig. 10, depicts a block schematic 

of the FFDTD system with the progress of the training 

validation.  

As a result, Fig. 10, also depicts the training 

performance and prediction results for N=100 samples 

using MATLAB. Four input values are used: maximum 

conductor temperature, minimum conductor temperature, 

output voltage or external ambient temperature, and noise. 

Fig. 10(a), displays the best validation performance 

(0.98256) at 0 epochs which is better as compared to the 

FFBP, while Fig. 10(b), shows the predicted signal values. 

Fig. 10(c), shows the validation checking of the given 

FFDTD model. Fig. 10(d), displaying the relatively low 

error signal between the actual and projected data, arguing 

for the system's efficiency in producing the expected 

output.  
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Table I is the confirmation from which the data was 

predicted for N=100 samples with 20 neurons. 

 

 

 
Fig. 9.Validation ampacity results of prediction and training the power-transmission lines by FFBP.  

Figure 9 (a) displays the best validation performance (1.984) at 0 epochs,  

Figure 9 (b) shows the regression values, indicating how effectively the neural network is trained as the Training R-value is almost equal to 1.  

Figure 9 (c) shows the validation checking of the given test.   
Figure 9 (d) depicts the overlapping signals of real and anticipated data.  

Figure (e) displaying the relatively low error signal between the actual and projected data, arguing for the system's efficiency in producing 

expected output 



UW Journal of Science and Technology Vol. 6 (2022) 45-53 

ISSN: 2523-0123 (Print) 2616-4396 (Online) 

Personal Use permitted, but republication/redistribution requires UW permission. 

51 

 
 

Fig. 9. Validation ampacity results of prediction and training the power-transmission lines by FFDTD. 

Figure 10 (a) displays the best validation performance (0.98256) at 0 epochs which is better as compared to the FFBP, while Figure 10 (b) shows 
the predicted signal values. Figure 10 (c) shows the validation checking of the given FFDTD model. Figure 10 (d) displaying the relatively low error 

signal between the actual and projected data, arguing for the system's efficiency in producing expected output. 

 
 

Table I is the confirmation from which the data was predicted for N=100 samples with 20 neurons. 
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TABLE 1. 

CURRENT RATINGS ACTUAL VS PREDICTED FOR OVERHEAD POWER TRANSMISSION LINES 
 

 

V. CONCLUSION 

An approach for estimating current in high voltage 

transmission lines utilizing pyro-sensors, machine learning 

methods, and artificial intelligence is suggested in this 

work. On the collected data from high voltage power 

transmission lines, simulations using MATLAB software 

are run, and current estimation is computed using an 

artificial intelligence network method.  

The suggested methodology's efficacy is validated by 

FFBP and FFDTD models using the MATLAB simulated 

neural network toolkit. It is validated that feed forward 

distributed time delay gives the best validation 

performance (0.98256) at epoch 0 as compared to the 

forward backward propagation which gives best validation 

performance at 1.984, it means validation performance of 

FFDTD is better than FFBP. Using pyro sensors and an 

ANN network, current estimates may be done in any 

remote place by tracing down existing power quality 

characteristics of high voltage power lines.  

The positive findings for current predicted values are 

promisingly similar to actual current values, making the 

system trustworthy to use in the future as a substitute for 

CTs and PTs and may be used to measure current at any 

distant position on high power transmission.  
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