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Abstract—In Optical Packet Switching (OPS) networks 

wavelengths are shared on optical links and data packets are 

multiplexed statistically in all-optical domain. Quality of 

service covers management of resources and traffic control to 

deliver improved services to specific traffic classes. An 

Artificial Intelligence Based Dynamic Wavelength Grouping 

(AIDWG) scheme is proposed for OPS. In this scheme, 

available wavelengths are partitioned dynamically by Linear 

Regression Model (LRM) and allocated to traffic service 

classes at each network link. AIDWG tracks the load, 

blocking, wait time and utilization of each traffic class and 

schedules optical packets according to the assigned group of 

wavelengths. A discrete event-based network simulator 

IBKSim is used to examine the performance of National 

Science Foundation Network (NSFNet) topology. AIDWG 

beats its previous static version named as Static Wavelength 

Grouping (SWG) by a significant factor. Due to the flexibility, 

the proposed AIDWG technique gives good results upto 40% 

in comparison to SWG in terms of blocking and throughput 

even when the load share of one class is significantly less than 

other classes of traffic. 

Index Terms— Artificial intelligence, Quality of service,  

Dynamic wavelength grouping, Optical packet switching. 

I. INTRODUCTION 

NTERNET traffic coming from multimedia, live 

streaming, medical imaging, online gaming, and critical 

applications doubles every three or four months [1]. 

Wavelength Division Multiplexing (WDM) has offered as 

a feasible choice for broadband transmission capability in 

continuously varying internet traffic scenarios [2]. 

Numerous technologies were advanced for data transfer 

over WDM, such as Optical Burst Switching (OBS), 

Optical Circuit Switching (OCS), and Optical Packet 

Switching (OPS). OPS is based on hop-by-hop optical 

packet delivery of numerous IP client packets. Optical 
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packets build electrically at the edge nodes, however their 

buffering and routing at core nodes are done entirely at the 

optical layer. In its basic form, OPS has higher bandwidth, 

utilization, flexibility, scalability and Packet Loss Ratio 

(PLR) [3]. Because of its fine granularity, scalability and 

high throughput, OPS may be the most revolutionary 

technology for core networks. On the other hand, optical 

packet’s contention is a severe issue in the core of OPS 

networks. Optical networks must adopt the dynamic 

conditions of the environment to fulfil Quality of Service 

(QoS) standards. 

The fundamental goal of QoS is to offer precedence to 

certain types of traffic, such as dedicated bandwidth, 

throughput, and latency in real-time traffic. Furthermore, 

prioritizing one or more traffic types does not lead to the 

failure of other traffic types. QoS refers to a set of 

requirements that users must meet, such as how quickly 

data packets can be delivered, how much end-user has to 

wait for receiving, how much possibility of data loss, and 

so on. The advent of enormously adaptable networking 

principles and the deployment of improved transmission 

techniques have made the optical network's operation and 

design highly complex [4]. 

Artificial Intelligence (AI) and Machine Learning (ML) 

methods can capture such complicated dynamic system 

behaviour with comparatively simple supervised or 

unsupervised algorithms training to address drastic 

variations in traffic requirements regarding latency, 

capacity, and QoS. As a result, current optical networks are 

anticipated to operate at substantially higher utilization 

levels than in the past while maintaining the strict quality of 

service standards. AI allows network engineers to develop 

data-driven models in optimized, desirable, and effective 

network management and provisioning. It will enable 

automated optical networks fast driven and self-configured.  

Furthermore, flow classification applies flow-specific 

policies to already supplied services, such as handling 

packet priority, performing flow and congestion control, 

and ensuring adequate QoS to each flow [5]. In OPS 

networks, AI-based techniques are getting more attention 

from researchers to enhance the telecommunication 
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network performance in switching, transmission, and 

network management [6]. Optical networks can learn on 

their own using AI approaches with "self-aware" of network 

state, control rules, and "self-managed" of network 

operation, particularly failure management.  

This research paper proposes a new QoS provisioning 

scheme categorized as "Artificial Intelligence Based 

Dynamic Wavelength Grouping in Optical Packet Switched 

Networks(AIDWG-OPS)". This new scheme is based on 

LRM and predict value of wavelength group for each 

priority class traffic. QoS standards are achieved in OPS in 

terms of blocking probability and throughput by using the 

wavelength grouping scheme under the wavelength 

reservation scheme in Error! Reference source not 

found.. In wavelength grouping, a set of wavelengths is 

dedicated to a specific traffic class with different priorities. 

LP optical packets can only use specified wavelengths, 

whereas HP can use all wavelengths. Restricting 

wavelengths for lower service traffic classes can provide 

differential QoS, and an HP optical packet with a higher 

number of wavelengths can reduce the chance of packet 

failure. In the static wavelength grouping scheme, there are 

some constraints which are overcomed in this research. As 

a load of HP traffic is less than LP traffic or total load, the 

static wavelength set assigned to the HP traffic class is 

underutilized. In this scenario total blocking probability 

increase thus throughput decrease [7]. Wavelengths are 

grouped dynamically for each type of incoming traffic to 

resolve this issue [3]. But dynamic wavelength grouping is 

done on the base of the total shared load of  LP traffic class. 

Still, it is not deciding by considering other parameters like 

utilization, waiting time, blocking probability, and 

throughput. In OPS, Therefore the solution to this problem 

is to implement AI for wavelength grouping through LRM. 

The presented algorithm analyzes four different parameters 

and distributes wavelengths among other classes of traffic. 

This analysis is based on topology NSFNet-32. The 

contributions of this research work are as follows: 

• Created dataset from run time simulations 

• Trained the LRM on dataset 

• Test the model on new input data 

• Developed and tested a novel technique. 

"AIDWGOPS. " 

• Successfully attained QoS in OPS networks. 

• On varying load conditions, the total blocking 

probability is reduced. 

• The network throughput was significantly enhanced 

 

The rest of paper is organised in the following manner. 

Section II presents the related work, describes QoS 

constraints and techniques in optical networks.  Section III 

gives a comprehensive overview of the proposed AIDWG 

strategy. Section IV describes our simulation setup, 

whereas Section V discusses the experimental results and 

evaluates the concept. Finally, Section VI gives the 

conclusion.  

 

 

 

II. RELATED WORK  

AI techniques are categorized in different subfields as 

expert system (ES), machine learning (ML), robotics, and 

distributed artificial intelligence (DA) [8]. In contrast to the 

above-outlined approaches, ML has been widely applied in 

optical networks regarding QoS provisioning. An agent is 

trained on a collection of input-output pairs and learns a 

mapping function from input to output in supervised 

learning [9]. 

Many studies have been conducted to ensure QoS in OPS 

networking[10]. QoS can be implemented at various stages 

of OPS like in the wavelength reservations scheme, drop-

based scheme, and packet aggregation scheme. Figure 1 

depicts some of the policies and strategies for QoS 

differentiation that have been developed. These existing 

techniques , which have been designed as proactive and 

reactive [11] approaches [12], attempt to solve the 

contention problem in OPS networks, and include the use 

of software techniques and additional hardware for 

provisioning of best QoS-capable environments, with the 

goal of optimizing the PLR and blocking with minimal 

delays and improved throughput even in high and varying 

traffic loads. 

Other QoS schemes can be labeled in Scheduling based 

scheme(Merit-Based Scheme(MB) [13]), packet assembly 

[14] (Composite Packet Assembly (CPA) [15], and Non-

Composite Packet Assembly (NCPA) [16]), drop-based 

schemes [17], routing based schemes [18-21], wavelength 

reservation schemes (Wavelength Access Restriction 

(WAR) [22], Wavelength Allocation(WA) [23], Additional 

Wavelengths (AWs) [24] and Wavelength Grouping [7, 25, 

26]), supplementary resource reservation (Egress 

Coordination [27], Contention-Less Transmission [28] and 

Multi-Fiber Allocation [70]), and contention based schemes 

( Coded Packet Transport (CPT) Scheme [29],Use of 

Wavelength Converters (WCs) [30], Shared Packet loss 

Recovery Scheme(SPLR) [31] and Network Layer Packet 

Redundancy Scheme [32]); for their brief overview see also 

[16]. 

  In order to reduce the BLP, reinforcement learning was 

used in the OBS network to determine the best path and 

wavelength. A Q-learning-based algorithm is proposed, 

selecting optimal wavelengths from the available 

wavelengths for burst transmission to reduce BLP in OBS 

[2]. An automatons OBS network has been developed for 

self-protection, self-optimization, and self-restoration. This 

automaton network has a learning module that gradually 

learns from the environment's feedback. The intelligence 

acquired by these automatons is utilized in making control 

decisions that significantly impact performance, and these 

decisions, in turn, have a considerable impact on the 

environment [33, 34]. Close loop-based cognitive 

Graphical Probabilistic Routing Model (GPRM) has been 

established for OBS networks to guarantee end-to-end QoS. 

This model builds a practical routing table for OBS routing 

without influencing end-to-end delay. This cognitive closed 

loop-based mechanism maximizes wavelength utilization 

and decreases BLP in OBS networks [35].  
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III. ARTIFICIAL INTELLIGENCE BASED DYNAMIC 

WAVELENGTH GROUPING FOR QOS IN OPS NETWORKS 

Limitations in the previous two versions of wavelength 

grouping (SWG, DWG) have been explained in the 

Introduction section. The algorithm proposed for SWG is 

not compatible with different arrival rates and dynamic 

traffic load. In SWG [7], the grouping of wavelengths is 

prefixed for each class of traffic. Let suppose 16 

wavelengths are partitioned into 8-16 disjoint subgroups (8 

for LP and 8 for HP), and each subgroup is assigned to a 

single priority class. If LP class traffic increase then this 

algorithm do not compete for extra resources. Thus total 

blocking probability increases and throughput decreases 

which refers to the unfair, inefficient, and inflexible 

wavelength partitioning behaviour towards QoS from a 

network performance perspective. DWG approach has been 

proposed as a solution for the above-highlighted problems 

of SWG. Any wavelength can carry optical packets of any 

priority class until the maximum count of reserved 

wavelengths for that priority traffic falls below a specific 

threshold. Additionally, optical packet of the HP traffic 

class may fill all possible wavelengths, potentially reducing 

packet losses caused by output port contention [3, 36]. 

Due to the above limitations and dynamic traffic nature, 

a more flexible and refined approach is proposed named 

"Artificial Intelligence Based Dynamic Wavelength 

Grouping (AIDWG)." AIDWG is the same as DWG, but 

linear regression model is used to decide wavelengths 

partitioning in disjoint subgroups at all switching nodes in 

the OPS network. The architecture of OPS is based on static 

routing rather than adaptive routing, so based on the 

physical distance or number of hops or some other fixed 

metric, one or more routes are determined in advance. For 

QoS traffic is distributed in the priority-based service 

classes where each class has a unique label 𝑃𝜔. Also, 𝑃𝜔 is 

assigned by a wavelength set 𝑤𝑝𝜔 out of total available 

wavelength 𝑤𝑡𝑖 at link h. The LRM is trained on the dataset 

and then based on the four parameters(load, blocking, 

waiting time, and utilization) value of 𝑤𝑝𝜔 is calculated. 

The data set is based on the simulated values of the four 

parameters listed above. LRM take the current values of all 

four parameters and adjust the regression coefficients in 

order to give best wavelength group value and then 

according to the wavelength set optical packets are 

scheduled on available wavelengths.  In our experiment, we 

looked at a network with traffic across two classes [ω Є (1, 

0)] named as HP with ω = 1 and LP with ω = 0. As HP class 

optical packet is denoted by 𝑃1 and LP class optical packet 

is addressed by 𝑃0. 

 

𝑤𝑝𝜔 = 𝜃0 + 𝜃1. 𝐿(𝑃1, 𝑃0) + 𝜃2. 𝐵𝑃ℎ
𝜔 + 𝜃3. 𝑊𝑇𝜔

ℎ + 𝜃4. 𝑈𝑃𝜔
ℎ   (𝟏) 

             𝐽 =
1

𝑛
∑(𝑝𝑟𝑒𝑑(𝑤𝑝𝜔

𝑖 ) − 𝑤𝑝𝜔
𝑖 )

𝑛

𝑖=1

                                         (𝟐) 

 

Where 𝜃0 is the intercept and 𝜃1, 𝜃2, 𝜃3 𝑎𝑛𝑑 𝜃4 are 

linear regression coefficients. It is critical to update the 

𝜃𝑛 values to find the ideal weight that reduces the error 

between the predicted and actual value of  𝑤𝑝𝜔. Cost 

function (J) given in Eq.2 is used to find the error and to 

update the values of 𝜃𝑛 we apply gradient descent on cost 

function by taking partial derivatives for each 𝜃𝑛 to achieve 

the best-fit line from Eq.1. 𝐵𝑃ℎ
𝜔 is the blocking probability, 

𝑊𝑇𝜔
ℎ is the Waiting time and 𝑈𝑃𝜔

ℎ is the utilization for 

each 𝑃𝜔 traffic class on link h. Furthermore, calculated 

values of all parameters are sent to LRM. This model is 

already trained on the simulated dataset, and then according 

Figure 1. Different QoS Techniques in Optical Networks 
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to the given values of parameters, LRM provides a value of 

𝑤𝑝𝜔 on a current link h from Eq.1.  

Let suppose Eq.1 gives 𝑤p0 wavelengths for the 

transmission of 𝑃0 optical packets on link h, then first 𝑤p0= 

(𝑤0, 𝑤1, … , 𝑤p0−1) wavelengths from 𝑤𝑡𝑖 and  𝑤p0 <

𝑤t1 are arranged for 𝑃0 optical packets. Thus 𝑃0 optical 

packets can only use wavelengths from a specified set of 

wavelengths. HP optical packets can be scheduled on any 

wavelengths from total 𝑤t1on link h. In this way, dynamic 

scheduling of optical packets is done on any available 

wavelength if there is a void length same as incoming 

optical packet length and 𝑤p0 are still less than 𝑤t1. The 

scheduling module maintains the switching matrix, where it 

controls the transit packets competing with local packets of 

traffic for wavelengths utilization. To prevent the other 

traffic classes from being ignored and to maintain the 

network's QoS consistency despite the variable proportions 

of both classes in overall load, every switching node must 

ensure that the number of engaged wavelengths for 𝑃0 does 

not exceed the 𝑤p0 preserved wavelengths. 

 
TABLE 1 

List of Notion Used 

Symbols Descriptions 

𝜔 Priority classes  

𝑃𝜔 Optical packets for 𝜔 priority 

𝑤𝑝𝜔 Assigned set of wavelength for 𝑃𝜔 

𝑤𝑡𝑖 Number of wavelengths in link h 

𝐵𝑃ℎ
𝜔 Blocking probability of packets on 

link ℎ 

𝑊𝑇𝜔
ℎ Waiting time on each link ℎ 

𝑈𝑃𝜔
ℎ Utilization of each wavelength set 

 

Table.1 depicts the concepts used to calculate load for each 

class, blocking probability, waiting time, utilization, and 

network throughput. Error! Reference source not found. 

illustrates how AIDWG works in a scenario with two 

service classes and four wavelengths. At first, we suppose 

that two wavelengths (𝑤3and 𝑤4) are available for 𝑃0 

class packets and 𝑃1 has access to all four wavelengths 

(𝑤1, 𝑤2, 𝑤3 and 𝑤4). At time 𝑡c, 𝑃0 optical packet can 

only schedule on w_3 and w_4 with the latest available 

unscheduled time[25, 37]. But after the first iteration, 

𝑃0 can also be schedule on 𝑤1 and 𝑤2 according to the 

value of 𝑤p0. As a result of the dynamic behavior of AI-

based wavelength grouping, wavelength partitioning 

changes over time with variations in QoS provisioned 

different parameters used in LRM, and assigned 

wavelengths for multiple service classes can vary. 

IV. SIMULATION SYSTEM AND SETUP 

Using the discrete event-based IBKSim simulator [38], we 

performed simulation experiments to verify and analyze the 

results of the designed AIDWG scheme. AIDWG was 

simulated on popular network topology named as NSFNet 

network with nodes (n) =16 and links (h) = 25 represented 

in Figure 3. 

We specified a threshold size of 1 Mbit and a threshold 

duration of 100s for assembling IP packets (generating from 

packet sources) into optical packets in assembly queues. A 

maximum of 103 optical packets can assemble in the FCFS 

dispatch queue. All intermediate node pairs have a uniform 

distribution of traffic. A control packet takes 10 μs to 

process at each node, while the propagation delay is 5μs/km 

for each packet. The total time of simulation consists of 20 

intervals and a warm-up interval, and the output accuracy is 

determined using a 95% confidence interval.  

Each simulation interval generates 105 packets. We took 

an example of two priority classes where class 1 is HP 

traffic, and class 0 is LP traffic and then simulated this 

example with 16 wavelengths, each with a capacity of 10 

Gbps. Further, scenario1 is based on the load share of each 

class in total load is simulated on NSFNet and evaluated the 

effect on QoS provisioning standards by load variation of 

different classes. 

Configuration is designed so that at the start, HP traffic 

share began from 5% and then reached up to a maximum 

50% share in total traffic load by the increment of 5% in 

each step. Likewise, started LP traffic share is 95% and 

reaches a minimum of 50% LP load share in total load by 

decrement of 5% in each step. After all was done, we 

arrived at a 50 percent HP and 50 percent LP configuration,. 

V. RESULTS AND DISCUSSION 

AIDWG results are explained in terms of mean blocking 

probability, and total throughput at all network nodes. The 

proposed technique is evaluated and compared with the 

previous SWG scheme from Error! Reference source not 

found. to Figure 6. 

Error! Reference source not found. indicates the mean 

blocking probability relevant to the average offered link 

Figure 2. Scheduling through AIDWG using four 

Wavelengths 

 

Figure 3. NSFNet Topology 
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load for HP and LP classes for SWG and AWDWG 

schemes in NSFNet topology. The wavelength grouping set 

is taken as 8-16 for SWG. We see that the mean blocking 

probability for HP traffic class is always less than LP class 

in both schemes and also HP traffic class blocking 

probability is less than HP blocking probability from SWG 

scheme. Because of the restricted wavelengths, More 

resources will be contributed by HP traffic packets and 

experience less Packet Loss Ratio (PLR) than LP packets. 

Smooth with a somehow curvy pattern shows a vast 

difference in probability of blocking for both classes (LP 

and HP), which assures QoS in terms of blocking 

probability. 

 
TABLE 2 

Simulation Parameters 

Parameters Values 

size of packets 64 kbit 

packet assembly threshold time: 100 μs, length: 1 mbits 

dispatch buffer capacity  103 packets  

wavelength conversion  On each node available 

link capacity 10 Gbps 

total number of available 

wavelengths on each link 

16 

simulation intervals  

 

20 intervals and a warm-up period 

accuracy of results 95% confidence interval 

Number of packets 
generated for each 

simulation interval 

105 

traffic classes of service two-classes (HP: 1, LP: 0) 

 

 For AIDWG, blocking probability QoS is also shown 

with unfixed wavelength group with the same load 

configuration for HP and LP traffic classes. Wavelengths 

for each class are determined from LRM. The resultant 

curve is smoother and more carver. Furthermore, you can 

see a clear blocking difference between 0.4 to 0.6 load 

points. This difference tells us that AIDWG guarantees high  

Figure 4. Comparison between SWG and AIDWG in term 

of class-wise mean blocking probability and average load 

for NSFNet 

 

QoS services than SWG at each point of load. Error! 

Reference source not found.Error! Reference source 

not found. compared SWG and proposed AIDWG in 

terms of total blocking probability at each load point for 

NSFNet topology. The graph shows that at point 0.2, SWG 

is giving very high blocking compared to AIDWG because 

HP load share is 5% and LP load share is 95%, and SWG is 

assigning 8-16 wavelengths which mean 8 for LP and 

remaining for HP. LP packets do not compete with HP to  

Figure 5. Comparison between SWG and AIDWG in term 

of average load and total blocking probability for NSFNet 

topology 

 

get more resources for large load share, so here PLR 

increases and thus blocking also increase in the SWG 

scheme. whereas proposed AIDWG scheme works using 

LRM, so it assigns wavelength group according to the 

current load situation by learning through an environment. 

Simulated values of laod,blocking,waiting time and 

utilization are sent to LRM and model give corresponsing 

set of wavelengths for LP class and remaining from total 

wavelengths are assigned to HP class traffic at each network 

node. At the equal load share, there is roughly a 50% 

difference between SWG and AIDWG because, at this 

point, SWG gives eight wavelengths to LP, whereas 

AIDWG gives value of wavelength set for LP according to 

updated model value.  

 
Figure 6. Comparison between SWG and AIDWG in term 

of average load and mean throughput for NSFNet 

topology 

 

To check the efficiency and flexibility of proposed  

AIDWG in terms of QoS, Figure 6 indicates the mean 
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throughput for NSFNet topology at each load point. At 

point 0.2, there is a minor difference between AIDWG 

throughput and SWG throughput. But as load increases, 

throughput is also increasing in both schemes. But from the 

Figure 6, we can see a clear difference at point 0.8, when 

HP traffic load share reached from 5% to 35% and LP load 

share is gone from 95% to 65% in total load, giving the idea 

that AIDWG is somehow extreme better technique than 

SWG.  

Moreover, Throughput from SWG is linear and increasing 

sharply as load increase rather than according to each class 

load. However, throughput against the proposed AIDWG is 

linear and curvy and gradually increases with variation in 

each class's load.  

 Graphical analysis for both techniques shows that 

AIDWG improves QoS results in terms of blocking and 

Throughput. Also, the proposed scheme does not use extra 

resources like WAR for providing good QoS in real-time, 

interactive, and dynamic networks. Thus, from all the above 

discussion and results, we can say that AIDWG is a much 

better and flexible approach than all other schemes. 

VI. CONCLUSION 

AIDWG technique is proposed in this paper to give better 

QoS in fluctuating load-based OPS networks. Wavelength 

groups and other resources are dynamically partitioned and 

allocated to each traffic class by tracking the load, waiting 

time, blocking, and utilization in varying traffic loads. 

Wavelength group changes according to four parameters, 

and linear regression checks the best value for each type of 

load class. Dataset is prepared from multiple simulations. 

discrete-event-based simulation is evaluated in different 

load scenarios for each class to check the flexibility of 

DWG in terms of blocking and throughput. The graphical 

analysis shows a total improvement of roughly 30% and 

40% in average blocking probability and network 

throughput of each class packet. AIDWG beats the old 

SWG scheme by allocating optimal partitioning of available 

wavelengths among different traffic load scenarios of HP 

and LP  classes, guaranteeing QoS in terms of throughput 

and blocking. In the future, our target is to analyze the 

AIDWG with more parameters and improve the 

performance of the AI-based DWG technique in terms PLR. 
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